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ABSTRACT 

The genera l  problem treated+is that of convective h e a t  

t r a n s f e r  i n  a p a r a l l e l  plane passage with both laminar and 
tu rbu len t  hydrodynamically f u l l y  e s t ab l i shed  flow. With 
t h e  assumptions t h a t  the f l u i d  has  cons tan t  p rope r t i e s  and 
neg l ig ib l e  viscous d i s s i p a t i o n ,  i n t e r n a l  energy generat ion,  
and axial  conduction, t he  governing d i f f e r e n t i a l  energy 
equation is solved for seve ra l  basic w a l l  boundary condi- 
t i o n s .  The r e s u l t i n g  fundamental so lu t ions  can be super- 
imposed t o  s a t i s f y  any w a l l  temperature o r  h e a t  f l u x  
boundary condi t ion.  

T h e  fundamental boundary condi t ion sets, o r  cases, are 
four  i n  number. I n  each case t h e  f l u i d  and w a l l s  i n i t i a l l y  

have a uniform zero temperature;  then ,  a t  the ' 'thermal 
e n t r y  , I' 

1. 

2. 

3 .  

4. 

one of t h e  following steps occurs: 

The temperature a t  one w a l l  i s  increased t o  un i ty ,  
t ha t  a t  the o ther  w a l l  being held a t  zero; 
The heat f l u x  a t  one w a l l  is increased t o  a non- 

zero cons t an t ,  t h a t  a t  the other w a l l  being held 

a t  zero; 
The temperature a t  one w a l l  is  increased t o  u n i t y ,  
t h e  h e a t  f l u x  a t  the o the r  w a l l  being he ld  a t  zero; 
The h e a t  f l u x  a t  one wall  i s  increased t o  a non- 
zero cons tan t ,  the  temperature a t  t h e  o the r  w a l l  
being he ld  a t  zero.  

The  s o l u t i o n  of the four  cases r e s u l t s  i n  dimension- 
less w a l l  temperatures,  w a l l  heat fluxes, and f l u i d  mean 
temperatures;  these a r e  called "fundamental s o l u t i o n s , "  

and their use i n  solving problems with a r b i t r a r y  w a l l  
boundary condi t ions i s  described. These fundamental solu- 
t i o n s  are presented i n  t a b u l a r  and graphica l  f o r m  f o r  l a m i -  
nar  f l o w ,  and f o r  t u rbu len t  flow w i t h  P r  = 0.70 and 

V 



Re = 20,000, 30,000, and 50,000. The case of Pr = 0.01 
is also considered for the fully developed temperature pro- 
file region. 

The governing energy equation is reduced to two ordi- 
nary differential equations by separation of variables. 
One of these equations, together with its boundary condi- 
tions, constitutes a problem of the Sturm-Liouville type, 
and is solved by direct numerical integration, The result- 
ing lower eigenvalues and constants are presented in tabular 
form. The higher eigenvalues and constants are determined 
by the W K B J  approximate solution and are also presented. 
An integral solution is set forth for use in the immediate 
vicinity of the thermal entry. 

A facility for the experimental study of heat transfer 
between air and a non-isothermal parallel plane passage is 
described. Turbulent flow data gathered with the facility 
are presented for several wall boundary conditions and are 
compared with the theory predictions. 

vi 
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NOmNCLATURE 

English l e t te r  symbols 

A+ 

c 
P 

e 

'n 

Dh 

f 

f 

g (3 

gC 
-1 

G , H  

h 

h 6) 

I 

J 

k 

K 

Kn 

m 

n 

a cons tan t  i n  t h e  eddy d i f f u s i v i t y  for momentum 
t r a n s f e r  expression,  h e r e i n  taken t o  be 26 

s p e c i f i c  h e a t  a t  cons tan t  pressure ,  Btu/lb-*F 

a cons tan t ,  defined where used 

eigenconstant  

hydraul ic  diameter,  he re  4y0, f t  

a func t ion ,  def ined where used 

f r i c t i o n  f a c t o r ,  defined by (IV.B.9) 

funct ion used i n  t h e  W K B J  approximation 

constant  of p ropor t iona l i t y  i n  Newton's Second 
Law, (1b-ft/#-sec2)-l 

a r b i t r a r y  cons tan ts  

convective hea t - t ransfer  c o e f f i c i e n t ,  Btu/see-ft2-'F 

v a r i a b l e  used i n  t h e  tu rbu len t  WKBJ approximation 
and Appendix A,  def ined by (IV.G.3) 

incomplete gamma funct ion  

B e s s e l  funct ion of t h e  f i r s t  kind 

thermal conduct iv i ty ,  Btu/sec-ft2-OF/ft 

a cons tan t  i n  t h e  eddy d i f f u s i v i t y  f o r  momentum 
t r a n s f e r  expression,  he re in  taken t o  be 0.4 

normalizing factor used i n  t h e  Berry and de P r i m a  
i t e r a t i o n s  

m a s s  f low rate,  lb/sec 

outward normal coordinate  from a wa l l ,  f t  

x i i i  



Nu Nusselt number, -k 

Pr Prandtl number, 5 
q " heat flux, Btu/sec-ft2 (Note: is positive 

when energy flows from the wall - to the fluid.) 

r radial length coordinate, ft 

r 
0 

+ 
0 
r 

Re 

U 

U m 
- 
U 

+ 
U 

X 

X 

Y 

YO 

circular tube radius, ft 

normalized circular tube radius 

Reynolds number, - 
Y 

a temperature shape profile, see (IV.B.27) 

temperature, OF 

velocity in the x direction, ft/sec 

mean fluid velocity, ft/sec 

U normalized velocity in the x direction, - 
m U 

normalized velocity in the x direction, defined 
by (IV.B.16) 

weight function in the Sturm-Liouville equation 

axial length coordinate, ft 
X normalized axial length coordinate, DhRePr 

function used in the separation of- variables 

transverse length coordinate, ft 

parallel plane passage half-width, ft 

Y - Y normalized transverse length coordinate, - 
yo 

xiv 



Y+ 

+ 
YO 

Yn ($1 

Z 

normalized transverse length coordinate, defined 
by (IV.B.8) 

normalized parallel plane passage half-width, 
defined by (IV.B.8) 

eigenfunction, used in the separation of variables 

normalized transverse length coordinate with origin 
at the lower wall, 1 + y 

Greek letter symbols 

a 

a 

Y 

r 
6 

6 

€H 

€M 

c 

'I 

rl 

e 

e 

ft2/sec k thermal diffusivity, - 

a distance parameter, used in Appendix E only 

parameter used in the turbulent W K B J  approximation, 
defined by (IV.G.19) 

gamma function 

denotes incremental step of wall boundary condition 

parameter used in the turbulent W K B J  approximation, 
defined by (IV.G.15) 

eddy diffusivity for heat transfer, ft2!/sec 

eddy diffusivity for momentum transfer, ft2/sec 

normalized transverse length - coordinate with origin 
at the upper wall, 1 - y 

normalized transverse length coordinate with origin 
at the lower wall, 1 + 17 
normalized transverse length coordinate with origin 
at the upper wall, 1 - y - 

normalized temperature, defined for the four funda- 
mental cases by (PI.B.lO, 11, 12, 13) 

' - 'fd normalized temperature, 
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eigenvalue ’n 

w viscosity , lb/sec-ft 
kinematic viscosity, IL , ft2/sec 

P 
4 dummy normalized axial length coordinate 

4 similarity solution variable 

P density , lb/ft” 
0 dummy variable 

T shear stress, #/ft2 

T wall shear stress, #/ft2 
0 

CD normalized heat flux, defined for the four funda- 
mental cases by (II.B.lO, 11, 12, 13) 

4s phase shift in the W K B J  solutions 

@ similarity solution function 

u) dummy variable, defined by (E.4) 

Subscripts 

e thermal entrance, = 0 

fd fully developed 

i inner wall 

m mixed mean 

m summation index 

n summation index 

0 outer wall 

W wall, y = 21 
- 

xvi 



I, INTRODUCTION 

I, A. The Problem 

The parallel planes geometry studied in this work is 
a mathematical idealization of an often-encountered heat- 
transfer surface geometry. It consists of two parallel 
planes of arbitrary finite spacing, arbitrary length, and 
infinite breadth, between which fluid flows in the length- 
wise direction, The problem is a two-dimensional one, the 
physical occurrences in each imaginary plane normal to the 
breadth being identical. 

The geometry is the limiting case of the circular 
annular passage as the radius ratio approaches unity, and 
of the rectangular passage as the aspect ratio becomes 
large, It is because it represents a mathematically simple 
approximation of these two physically realizable and prac- 
tically important geometries that the parallel planes con- 
figuration is worthy of study, 

Examples of heat-transfer systems that often can be 
represented by parallel planes include the nuclear power 
reactor with parallel plate fuel elements and the parallel 
fin extended surface heat exchanger. In the former case 
one normally wishes to compute surface temperatures from 
surface heat fluxes, while in the latter the reverse is 
true. Often the thermal "boundary conditions'a will differ 
in magnitude at the two plates, and even vary in the flow 
direction. Indeed, it is not difficult to envision a 
situation in which the heat flux 'is known at one plate while 
the temperature is specified at the other, Thus it is seen 
that there are many possible heat-transfer problems perti- 
nent to the parallel planes geometry. 

I. B, Objective 
The objective herein is to develop a simple and unified 

calculation technique and numerical values for the design 



engineer to solve parallel plane steady-state convective 
heat-transfer problems of a wide variety of wall boundary 
conditions for the case in which the fluid has constant 
properties, a fully established velocity profile, and neg- 
ligible viscous dissipation, internal energy generation, 
and axial conduction, 

I, C. Summary 
The general technique for solving parallel planes con- 

vective heat-transfer problems is developed in Section HI. 
Use is made of the "fundamental solution" concept proposed 
by the author together with Reynolds, Lundberg, et al, 
Numerical values of these fundamental solutions are calcu- 
lated in Section 111 for laminar flow, and in Section IV 
for turbulent flow, 

4 8  

In Section V is reported experimental work conducted 
to verify certain assumptions inherent in the turbulent flow 
analysis. 

Finally, conclusions are drawn from the analysis and 
some suggested areas for further study are outlined in 
Section VI. 

Numerical examples of the use of the methods developed 
herein are to be found in Appendix D. 

2 



o r t h  i n  t h e  In t roduc t io  
t h i s  study t o  deve p so lu t ions  problems of 
h e a t  t r a n s f e r  between a f l u i d  and a para e l  planes passage 

t h e  d i f f e r e n t i a l  equation descr ib ing  t h e  temperature proEile  

i n  t h e  f l u i d  i s  l i n e a r  and homogeneous so it is  q u i t e  unnec- 
essary  t o  so lve  the problem i n  de ta i l  f o r  each possible - 

boundary condi t ion;  indeed, t h i s  would be an impossible t a s k  
s ince  t h e  number of poss ib le  boundary condi t ions i s  i n f i n i t e .  

Rather,  it is  necessary only t o  restrict a t t e n t i o n  t o  t h e  
minimum number of boundary condi t ions required t o  cons t ruc t  
a l l  o ther  boundary condi t ions by superposi t ion.  For t h e  
symmetric geometry of the p a r a l l e l  planes t h i s  minimum 
number i s  four .  These four  "building block" problems w i l l  

c be solved i n  d e t a i l  i n  Sect ions I11 and I V  and their  solu- 

for a wide v a r i e t y  of w a l l  boundary condi t ions.  Fort e l Y  , 

t i o n s  w i l l  be called "fundamental so lu t ions . "  
The remainder of t h i s  sec t ion  w i l l  be devoted t o  t h e  

development of t h e  f o r m  of these fundamental so lu t ions  and 
t o  a d iscuss ion  of the superposi t ion technique by w h i c h  

t hese  so lu t ions  can be used t o  so lve  the a r b i t r a r y  w a l l  
boundary condi t ion  problem. 

11. B. The  Mathematical Formulation 

The energy equation f o r  f l o w  between p a r a l l e l  planes 
is: 

(I1 .B. 1) 

when ing 

1, The v e l o c i t y  p r o f i l e  is f u l l y  es tab l i shed .  

3 



2. The fluid transport properties and density are 

3 .  Axial heat conduction, both molecular and eddy, 

4. Viscous energy dissipation is negligible. 
5. Internal fluid energy generation is negligible. 
6. Conditions are invariant with time. 

constant. 

is negligible. 

entry section 
for establishing 
velocity profile, 
t = te throughout. 

/ / / / I  / /  / / / I / /  1 

Nondimensionalizing, the following definitions are used: 

- 
c 

X 

- 
y & y, (see Fig. II.B.l) 

YO 
(I1 .B. 2) 

(Dh = 451, for the parallel 
planes geometry) (I1 .B. 3 )  

X x 4  DhRe Pr 

8 a suitably normalized temperature to 
be defined later (TI.B.4) 

The coordinate system employed is defined in the figure 
below. 

/ / / / / I / /  / / / /  / 
f 

Figure II.B.l. Parallel Planes Coordinate System 

4 



Equation (11. B. 1) then becomes 

(I1 .B.5) 

where um is  t h e  mean f l u i d  v e l o c i t y ,  def ined as 

J 
-1 

A s  stated i n  t h e  In t roduct ion ,  a t t e n t i o n  is t o  be 

focused on t h r e e  general  types of wal l  boundary condi t ions ,  
namely: (1) temperature spec i f i ed  a t  each wa l l ,  ( 2 )  h e a t  
f l u x  spec i f i ed  a t  each w a l l ,  and ( 3 )  temperature spec i f i ed  

a t  one wal l  and h e a t  f l u x  spec i f i ed  a t  t h e  o ther .  With t h i s  
a i m  i n  mind, t h e  s impl i f i ed  boundary condi t ions l is ted below 
w i l l  be d e a l t  with f i r s t .  

t ( X , l )  = tw q ” ( X , l )  = 

t ( X , - 1 )  = te q ” ( X , - 1 )  = 0 

C a s e  3 C a s e  4 

t (0 , i ; )  = te t (0 , l ; )  = te 

t ( X , l )  = tw q ” ( X , l )  = q” 

q # 1 ( Z , - l )  = 0 t ( X , - 1 )  = te 

(II.B.6,7) 

(11. B. 8,9) 

H e r e  tw, q”, and te are not  funct ions of d is tance .  

A dimensionless temperature and temperature d e r i v a t i v e  i n  
t he  t r ansve r se  d i r e c t i o n  w i l l  now be def ined for each of 

t h e  four  cases. 
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C a s e  1 C a s e  2 

C a s e  3 C a s e  4 

H e r e  n denotes t h e  outward normal from t h e  nea res t  
w a l l .  N o t e  t h a t  n i s  not  dimensionless,  b u t  has  t h e  u n i t s  
of l eng th ,  l i k e  y.  Recognizing t h a t  $ = - k(a t /an> t h e  
above boundary condi t ions and d e f i n i t i o n s  can be combined 
t o  g ive  the  following condi t ions.  (It should be noted t h a t  
throughout t h i s  study q" is  taken as p o s i t i v e  a t  a w a l l  
when t h e  h e a t  t r a n s f e r  is from t h e  w a l l  t o  t h e  f l u i d ,  regard- 

less of t h e  wal l  under cons idera t ion . )  

C a s e  1 C a s e  2 

ae (2 )  ( 1 I . B .  
14,15) 

* (2 )  ( X , l )  = 1 = 4 
aZ; 
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Case 3 Case 4 

= o  

= 1  

11. C. The Fundamental Solutions 

The differential Equation (II.B.5) taken with each of 
the four sets of boundary conditions listed above specifies 
the four fundamental problems or cases to be solved.. One 
is usually interested in the 8's or a ' s  (the tempera- 
tures or heat fluxes) at a wall, and so the 8's and 0 ' s  

evaluated there will be referred to as fundamental solutions. 
In fact, a double subscript notation will be employed to 
specify these fundamental solutions, the first subscript 
denoting the wall at which the solution applies and the 
second denoting the wall at which the nonzero boundary con- 

~ 

e(2) will denote the non- io dition applies. For example, 
dimensionalized temperature at the inner wall for the funda- 
mental case of the second kind with the nonzero boundary 
condition specified at the outer wall. The inner wall- 
outer wall notation is used here to be consistent with that 
employed in the treatment of annular passages. Where 
applicable, in the development to follow the outer wall will 
be that at ? =: +l. 

The mixed-mean fluid temperatures are also of interest, 
and they will be denoted by the subscript m. For example, 
8 (2 mo 
temperature for the fundamental case of the second kind 
with the nonzero boundary condition specified at the outer 
wall. These mean temperatures will also be called 

will denote the non-dimensionalized mixed-mean fluid 
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fundamental so lu t ions .  From energy cons idera t ions ,  t h e  

mixed-mean temperature is given by 

+1 

(I1 .c .1) 
-1 

where k refers t o  t h e  fundamental case, and j t o  t h e  
w a l l  a t  w h i c h  t h e  nonzero boundary condi t ion is appl ied.  
Actual ly ,  f o r  the p a r a l l e l  planes geometry 8 = 8 

a l l  four  fundamental cases .  Throughout t h i s  study when 

only one i o r  o subsc r ip t  is  used it refers t o  the w a l l  
a t  which t h e  nonzero boundary condi t ion  is  appl ied.  

for m i  m o  

The  fundamental s o l u t i o n s  t o  be sought are listed 

below. Note t h a t  t h e  laminar flow so lu t ions  w i l l  d i f f e r  
f r o m  those f o r  t u rbu len t  f l o w  s ince  the d i f f e r e n t i a l  
Equation ( I I . B . 5 )  assumes a d i f f e r e n t  form. 

Fundamental so lu t ions  of the f i rs t  kind 

Fundamental so lu t ions  of the second kind 
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Fundamental s o l u t i o n s  of t h e  t h i r d  kind 

Fundamental s o l u t i o n s  of the four th  kind 

11. D. The U s e  of the Fundamental Solut ions 

I n  the body of t h i s  study the above fundamental solu-  
t i o n s  are determined f o r  both laminar and tu rbu len t  f l o w .  
I n  t h i s  s ec t ion  it w i l l  be assumed t h a t  they are already i n  

hand and t h e i r  use w i l l  be demonstrated f i rs t  for  uniform 

w a l l  boundary condi t ions ,  and then f o r  a x i a l l y  varying w a l l  
boundary condi t ions.  

1. Uniform w a l l  boundary condi t ions 

a.  Temperature spec i f i ed  a t  each w a l l  

H e r e  t h e  boundary condi t ions are 

t ( Z , 1 )  = two (I1 .D. 1) 

t(%,-l) = twi 
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It is  asserted t h a t  t h e  so lu t ion  t o  t h e  problem speci- 
f i e d  by t h e  d i f f e r e n t i a l  Equation ( I I . B . l )  toge ther  with 
t h e  above boundary condi t ions  is  

t(z,G) = (x,Y) (two - te ) + e y  (X ,Y> (tWi - te) f te 

( I I . D . 2 )  

From Equations ( I I . B . l ,  10 ,  14)  and ( I I . D . 1 )  it is  seen 
t h a t  Equation ( I I . D . 2 )  satisfies both t h e  d i f f e r e n t i a l  
equation and t h e  boundary condi t ions ,  and so must indeed 
be a so lu t ion  of t h e  problem. 

It would normally be of in te res t  t o  determine t h e  w a l l  
.heat f l uxes  and mean f l u i d  temperature,  and t h i s  can be 

done with t h e  following equations: 

) + (z)bWi- te)] (II.D.3) 
- Go(Z) - - 

00 

cyi(%) = - k [@;A) (%)(two- te ) + Qft' (Z)(twi- te)] (II.D.4) 
Dh 

tm(x)  = e ( 1 )  m o  (x)(tw0- te ) + 0::) (g)(Lwi- te) + te (II.D.5) 

These follow from Equations ( I I . B . l O ) ,  ( I I . C . l ) ,  and ( I I . D . 2 ) .  

b. H e a t  f lux spec i f i ed  a t  each w a l l  

H e r e  t h e  boundary condi t ions are 

t ( O , ? )  = te 

q " ( X , l )  = Go 
q " ( Z , - l )  = Gi 

(I1 .D. 6)  
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and, as i n  the  preceding case, it can be seen t h a t  t h e  
following expression is a so lu t ion  of the problem. 

Also 

c. Temperature spec i f i ed  a t  one wal l  and hea t  f l u x  
spec i f i ed  a t  the  other  

It w i l l  be assumed t h a t  t h e  temperature is spec i f i ed  
a t  the  "outer"  wal l .  Then the boundary condi t ions  a r e  

t(ii,l) = two ( I I . D . 1 1 )  

q " ( Z , - l )  = qGi 

H e r e  the f l u i d  temperature is  given by a combination of t h e  
t h i r d  and four th  fundamental cases .  

and 

(II.D.13) 
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(II.D.14) Dh t w i  (Z) = e ( 3 )  i o  (Z) ) + el;) (z) G~ + te 

tm(ii) = e ( 3 )  (z) (two - te) -+ em= ( 4 )  (;;?.I 7 Dh xi + te (II.D.15) 
mo 

2.  Axial ly  varying w a l l  boundary condi t ions  

To i l l u s t r a t e  t h e  r a t i o n a l e  behind t h e  form of t h e  
so lu t ions  f o r  a x i a l l y  varying w a l l  boundary condi t ions ,  

a t t e n t i o n  w i l l  be d i r e c t e d  t o  t h e  p a r t i c u l a r  case of 

+=wi - te 
(see Fig.  I I . D . l ) .  Suppose now t h a t  one wished t o  eva lua te  

- - and two varying with x i n  a stepwise fashion 

- 
t h e  f l u i d  temperature a t  some p o s i t i o n  x . From ( I I . D . 2 )  

it appears t h a t  
1 

(II.D.16) 
+ te 

I n  f a c t  (II.D.16) does g ive  t h e  temperature d i s t r i b u t i o n  
f o r  t h e  posed problem s i n c e  t h e  equation s a t i s f i e s  both t h e  
governing d i f f e r e n t i a l  equation and t h e  s p e c i f i e d  boundary 
condi t ions.  (Note that  e ” )  oo = 1 and a l l  fundamental solu-  

t i o n s  with negat ive x arguments a r e  zero by d e f i n i t i o n . )  
The above equation can be w r i t t e n  m o r e  simply as 

- 

- 
and it can be seen t h a t  a t  any x 

tG ,? )  = [ e ( l ) ( X  0 - ~ n , Y ~ s t w o ( 4 n )  + te ( 1 I . D .  18) 
a l l  s t e p s  
before  x - 

1 2  



Now suppose one i s  confronted w i t h  a s i m i l a r  problem 
except t h a t  t h e  temperature a t  t h e  outer  w a l l  is  a continu- 

ous funct ion of x (or of t h e  dummy v a r i a b l e  4 ) .  One 
could approximate two ( 4 )  
as depicted i n  Figure I I . D . 2 ;  then t ( X , y )  would be given 
by ( I I . D . 1 8 ) -  And now, i f  t h e  s t e p s  are made smaller and 
more numerous, i n  t h e  l i m i t  t h e  sum becomes an in tegra l . ’  

- 
by a series of s m a l l  s t e p s  such I 

And now, t o  handle a w a l l  temperature d i s t r i b u t i o n  m a d e  up 
of continuous curves - and s t e p s  one simply eva lua tes  t h e  

i n t e g r a l  i n  (II.D.19) i n  t h e  Stielt jes sense r a t h e r  than 
i n  t h e  ordinary Riemann sense; t ha t  is ,  one breaks t h e  

i n t e g r a l  up i n t o  sums and i n t e g r a l s . *  
The varying w a l l  h e a t  f l ux  case is  handled i n  a s i m i l a r  

fashion.  For t h e  case of an a d i a b a t i c  inner  w a l l  t h e r e  
r e s u l t s  

It w i l l  be noted t h a t  t h i s  s o l u t i o n  satisfies t h e  governing 

d i f f e r e n t i a l  equation and t h e  spec i f i ed  boundary condi t ions.  
The equat ions of i n t e r e s t  f o r  the three types of w a l l  

boundary condi t ions  are set f o r t h  below i n  the s a m e  format 
a s  t h a t  employed for the uniform w a l l  boundary condi t ions.  

Note tha t  a l l  i n t e g r a l s  appearing must be evaluated i n  the 

St ie l t jes  sense.  

*The reader  i s  r e f e r r e d  t o  References 2 1  and 30 for discus- 
s i o n  of t hese  methods as appl ied  t o  t h e  c i r c u l a r  tube and 
t h e  f l a t  plate boundary l aye r .  
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Figure II.D.1. Illustration of a Step Wall 
Temperature Distribution 

Figure II.D.2. Illustration of an Arbitrary Wall 
Temperature Distribution 
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a. Temperature spec i f i ed  a t  each w a l l  

H e r e  t h e  boundary condi t ions  are 

t (0 , l ; )  - - te 

t ( X , l )  = two(Z) 

t ( Z , - 1 )  = tWi(Z) 

and t h e  so lu t ions  are 

( I I . D . 2 1 )  

f 1 

(II.D.23) 

(I1 .D. 24)  
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b. Heat flux spec i f i ed  a t  each w a l l  

H e r e  t h e  boundary condi t ions  a r e  

q" ( Z , l )  = Go (Z) 

q" (Z , - l )  = Gi(X) 

and t h e  so lu t ions  a r e  

(II.D.25) 

(II.D.26) 

(II.D.28) 
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c .  Temperature spec i f i ed  a t  one wal l  and hea t  f l u x  
spec i f i ed  a t  t h e  other  

Hwer t he  boundary condi t ions  a r e  

t ( O , Y )  = te 

t ( X , 1 )  = t w o ( X )  

q " ( X , - 1 )  = Gi(4) 

and the  so lu t ions  a r e  

(II.D.31) 
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(11. D. 3 3 )  

11. E.  The General Nusselt  Number Relat ions 

It w a s  brought ou t  previously tha t  t h e  familiar Nusselt  

number is  not  emphasized i n  t h i s  w o r k  s i n c e  it acqui res  the 

u t i l i t y  of t h e  fundamental so lu t ions  only i n  seve ra l  s p e c i a l  
cases of the w a l l  boundary condi t ions.  This fact  w i l l  be 

demonstrated i n  the present  s e c t i o n  i n  w h i c h  are der ived 
the Nusselt  number r e l a t i o n s  i n  terms of fundamental solu- 

t i o n s  f o r  the four  w a l l  boundary condi t ion  cases. It is 
hoped t h a t  t h e  reader  who i s  experienced i n  working w i t h  
the Nusselt  modulus for  problems of t h e  type treated he re  
w i l l  f i n d  t h i s  s e c t i o n  use fu l  for r e l a t i n g  h i s  experience 
t o  t h e  fundamental s o l u t i o n  r e s u l t s .  

18 



Uniform wall boundary condition Nusselt numbers will 

be derived for the four problem cases treated previously. 
In each, case the wall denoted by the subscript "0" will be 

treated. For the parallel planes geometry, of course, 
identical results would be obtained for the wall referred 
to by the subscript "i. 'I 

By definition 

hoDh Nuo 4 - k 

and 

4 GO 
ho - two - tm 

Hence 

(1I.E. 1) 

(II'E.2) 

(1I.E. 3) 

1. Case one 

Here the Nusselt number will be found for the case of 
a uniform temperature specified at each wall. Combining 
(II.D.3) , (II.D.5) , and (II.E.3) one obtains 

Hence 

(II.E.5) 
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2 .  C a s e  t w o  

For the case of  a uniform hea t  f l u x  specified a t  each 
w a l l ,  t h e  Nusselt  number is  found by combining ( 1 1 . D . 8 ) 5  

(II.D.lO), and (11.E-3). 

(I1 .E. 6) - GO 
e::) G~ + eoi (2 1 G~ - emo (2 1 G~ - emi (2 1 G~ Nuo - 

o r  

3. Case three 

H e r e  the Nusselt  number w i l l  be found a t  the  w a l l  a t  
w h i c h  a uniform temperature i s  spec i f i ed ,  a uniform heat 

f l u x  being spec i f i ed  a t  the o the r  w a l l .  From (II.D.13), 
(II.D.l5), and (II.E.3) 

(XI. E. 8) - 00 wo 

two te m o  

- 
N‘O 

- e ( 3 )  ( t o  - te) - emi ( 4 )  si Dh 

or 

(I1 .E. 9) 
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4. C a s e  four  

I n  t h i s  case t h e  Nus 

t h e  w a l l  a t  un 

form temperat ng 
(II.D.14) , (II.D.15) , 

N'O 

(II .E.10) 

o r  

It can be seen from t h e  r e l a t i o n s  f o r  t he  four  cases 
t h a t  t h e  Nusselt  number i s  a func t ion  of the  r e l a t i v e  magni- 

tudes of t h e  f luxes  o r  temperatures a t  t h e  w a l l s .  Hence, 
an  i n f i n i t e  number of Nusselt  numbers can exis t  f o r  each 
fundamental case, whereas t h e  number of fundamental solu- 
t i o n s  i s  f i n i t e  - f i v e  for  each of  t h e  four  cases. 
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111. LAMINAR FLOW 

was able to obtain the first three terms of an infinite 
series solution for the local Nusselt number. Graetz's 
series approach is the one most commonly employed by suc- 
ceeding investigators; unless otherwise specified, it is 
the approach used by all the authors mentioned in this sum- 
mary. Graetz's work is available in Jacob's book, "Heat 
Transfer. "" 

In 1923 Nusselt4' presented what appears to be the 
first study of heat transfer in laminar flow between par- 
allel planes. He treated the case of uniform and equal 
wall temperatures and used an attack similar to that of 
Graetz. His solution also has the same shortcoming as 
Graetz's in that the series for the local Nusselt number 
conveEges very slowly near the thermal entry, and the 
effort involved in the computation of more than the first 
three terms was prohibitively great. LevequeS5 alleviated 
this difficulty in 1928 with his approximate integral-type 
solution valid near the thermal entry. Leveque also pre- 
sented the first solution for a nonuniform wall temperature 
case. His work is available in a heat-transfer review by 

1s Drew. 
In 1940 Norris and Streid3' published an independent 

verification of Nusselt's results. This was done again by 
P ~ r d a y ~ ~  in 1949, and by Prins, Mulder, and S~henk,~' and 
Yih and Ce~mak'~ in 1951. 
terms of the series solution for the local Nusselt number 
were very well established for the case of uniform and 
equal wall temperatures. 

Thus, by 1951 the first three 
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Y i h  and C e r m a k ,  i n  t h e  same 1951 pape 

t o  gene ra l i ze  t h e i r  uniform and equal w a l l  te  
t i o n  t o  the case of variable (but  equal)  w a l l  
using a superpos i t ion  method. They then treated t h e  i n s  
lated wa l l s  case, t h e  case of uniform and unequal w a l l - t e m -  
pera tures ,  and t h e  case o f  v a r i a b l e  and unequal w a l l  t e m -  
pera tures .  I n  the same paper they a lso solved the c i r c u l a r  
tube problem for  v a r i a b l e  w a l l  temperature and f o r  an insu- 
lated w a l l ,  and they t r e a t e d  the  f i n i t e  w a l l  r e s i s t a n c e  

case. T h i s  paper s e e m s  t o  be t h e  first published proposal 
of t h e  superposi t ion method f o r  handling t h e  va r i ab le  wal l  
temperature problem i n  i n t e r n a l  flow, although t h e  method 

had previously been used i n  c e r t a i n  ex te rna l  f l o w  problems 
by Rubesin. 

rece ive  w i d e  c i r c u l a t i o n ,  so  the method w a s  no t  i n  general  
use u n t i l  it w a s  ou t l ined  by Klein and Tribus3' i n  1953. 

van d e r  D o e s  de Bye and Schenk" solved t h e  case of 

Unfortunately,  Yih and C e r m a k ' s  work d i d  not  4s 

c f i n i t e  w a l l  r e s i s t a n c e  with equal w a l l  temperatures i n  1953. 
Berry4 

year .  
f i n i t e  w a l l  r e s i s t a n c e  and nonuniform i n l e t  temperature pro- 
f i l e ,  and But le r  and P lewes '  

a t  a uniform temperature and the o the r  w a l l  insu la ted .  
Schenk5' solved t h i s  problem again i n  1955 and a l s o  deal t  

with the case of the uninsulated w a l l  having a f i n i t e  

r e s i s t ance .  Bodnarescu' solved again the cons tan t  and 
equal w a l l  temperature problem, and a l so  considered the 

e f f e c t s  of a x i a l  conduction. 
used the Rayleigh approximate method t o  so lve  the problem 
treated earlier by van de r  Does de Bye and  Schenk. 

Sellars, Tribus,  and Klein57 made a s i g n i f i c a n t  con- 

and Schenk5' a lso t r e a t e d  t h i s  problem i n  the same 
I n  1954 Schenk and B e ~ S t e r s ~ ~  d e a l t  with t h e  case of 

t r e a t e d  the case of one w a l l  

I n  1956 Dennis and Poots17 

t r i b u t i o n  i n  1956 by showing tha t  the W K B J  approximation 

K r a m e r s ,  B r i l l o u i n  and J e f f e r i e s )  o f t e n  
used for obta in ing  s o l u t i o n s  of the wave equat ion,  can 
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fruitfully be appl to the internal en 
in conduits. They asympt 
eigenvalues and eigenconstants oc 
equal wall-temperature problem, a 
expressions gave excellent results for values higher than 
the second or third. They also solved the uniform and 
equal wall heat-flux problem by an nversion method. 

More recently Cess and ShafferL2'13 solved the uniform- 
equal and uniform-unequal wall heat-flux problems by a 
direct attack using the procedure suggested by Siegel, 
Sparrow, and Hallman. 58 Dzung2' treated the case of arbi- 
trary but equal wall heat fluxes. In another paper Cess 
and ShafferL4 list the eigenvalues and eigenconstants 
occurring in the uniform and unequal wall temperature prob- 
lem. 
wall temperature Nusselt number employing the properties 
of the confluent hypergeometric function, and Brown7 
reports the first ten eigenvalues and constants for this 
problem with eleven figure accuracy. 

Pahor and Strnad43 calculated the uniform and equal 

Several methods differing from the Graetz series 
approach have been proposed for the solution of thermal 
extrance length problems. 
solution based on the problem of heat conduction through 
a composite slab. Singh5' suggested expanding the fluid 
temperature in a series of Bessel functions. Agrawal' 
employed an infinite Fourier sine series, and G ~ p t a ~ ~  and 
Sparrow and Siege162 applied variational methods. 

Levy36 presents an approximate 

Stein" has considered flow between parallel planes 
with a fully developed temperature and velocity profile. 
He derived the fully est shed Nusselt nuder for con- 
stant and unequal wall h 

ematical papers appear in the litera- 
thermal entrance 

first is by Lauwerier,33 who presents 
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some use fu l  p r o p e r t i e s  of confluent  hypergeometric func- 
t i o n s ,  and the second is  by Berry and de P r i m a , 5  
pose an i t e r a t i v e  method f o r  the determination of eigen- 

values .  

who pro- 

It is  apparent t h a t  the eigenvalues and eigenconstants  
necessary f o r  computing t h e  fundamental s o l u t i o n s  of the 

f i rs t  and second kinds have a l ready  been reported a t  least  
once i n  the l i t e r a t u r e .  For completeness they are a l s o  
ca l cu la t ed  h e r e i n ,  together  w i t h  those  required f o r  the 

so lu t ions  of t h e  t h i r d  and fou r th  kind, 
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I n  t h i s  s ec t ion  t h e  four  sets of fundamental s o l u t i o n s  

w i l l  be developed f o r  laminar flow between parallel  planes.  
It w i l l  be seen t h a t  t h e  so lu t ion  of t h e  d i f f e r e n t i a l  equa- 
t i o n  toge ther  with the appropr ia te  boundary condi t ions leads 

t o  an eigenvalue problem. The bulk of t h e  l abor  involved 
i n  f ind ing  t h e  fundamental so lu t ions  is t h a t  of ca l cu la t ing  
t h e  necessary eigenfunet ions,  eigenvalues,  and cons tan ts .  

1. The d i f f e r e n t i a l  equations and boundary condi t ions 

'H 9 
For laminar flow t h e  eddy d i f f u s i v i t y  of h e a t ,  

i s  zero ,  and (II .B.5) reduces t o  

For laminar f l o w  between p a r a l l e l  planes 

so  ( I I I . B . l )  becomes 

(111 .B. 1) 

( I I I . B . 2 )  

(I11 .B,  3) 

This is t h e  d i f f e r e n t i a l  equation t o  be solved. 
The boundary condi t ions on t h e  equation f o r  each of 

t h e  four  fundamental cases are given by (II.B.14, 15, 16 ,  
and 1 7 ) .  

C a s e  1 C a s e  2 

e (1 )  (O,?) = 0 de) (O,?) = 0 

(111 .B .4 95 )  
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It w i l l  be found t h a t  t h e  so lu t ion  of (IPP.B.3) re- 
qu i r e s  t h a t  t he  boundary condi t ions  a t  the  wal l s  be homo- 

geneous. This is  not  y e t  t he  case ,  bu t  a simple transforma- 
t i o n  of t he  dependent v a r i a b l e ,  8 ,  w i l l  b r ing  t h i s  about. 
Far downstream of t h e  e n t r y  the  temperature p r o f i l e  becomes 
f u l l y  developed; t h i s  f u l l y  developed temperature w i l l  be 

denoted by efd. A new temperature p r o f i l e ,  8 ,  is  
obtained by sub t r ac t ing  o f f  t he  f u l l y  developed p r o f i l e ,  
efd,  from t h e  temperature p r o f i l e  a t  any a x i a l  l oca t ion ,  8 .  

This transdormation was f i r s t  employed by Sparrow, e t  a1.61 

e k e , -  efd  (III.B.8) 

Since  (PII.B.3) is  l i n e a r ,  and i s  s a t i s f i e d  by both 8 and 
it is  a l s o  'fd' s a t i s f i e d  by 8.  

- = -  a2g 3 - y2) _a;8 
ax 32 a?" (I11 .B. 9) 

And now, s ince  both B and Bfd s a t i s f y  the  i d e n t i c a l  

boundary condi t ions  a t  t h e  wal l  f o r  each of t he  fundamental 

cases ,  t h e  boundary condi t ions  on become 
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C a s e  1 C a s e  2 

Case 3 Case 4 

( X J )  = 0 (III .B. 12,13) ae ( 4 )  

a? 
d 3 )  ( Z , l )  = 0 

The f u l l y  developed temperature p r o f i l e s  a r e  deter- 
mined i n  Section III.B.3. For t h e  moment they w i l l  be 

assumed known. 
The d i f f e r e n t i a l  equat ion and t h e  homogeneous boundary 

condi t ions are now i n  hand; the  so lu t ion  of the  problems so 
spec i f i ed  follows i n  the succeeding sec t ion .  
2, Solut ion of t h e  four  fundamental problems - general  

cons iderat i  ons 

Equation (III.B.9) y i e l d s  t o  the method of separa t ion  
of va r i ab le s .  L e t  

Then 

(111 .B. 14) 

w h e r e  A is  a cons tan t .  Thus t h e  following t w o  ordinary 

d i f f e r e n t i a l  equat ions are obtained 

2 8  



32 
3 X '  + - h 2 X  = 0 

A so lu t ion  of (III.B.15) i s  

- -  32 x2z 
3 

X = e  

(111. B .L5) 

(I11 .B. 16) 

(111 B 17) 

It w i l l  be recognized t h a t  (III.B.16) i s  a d i f f e r e n t i a l  

equation of t h e  Sturm-Liouville type,  w h e r e  h is t h e  
eigenvalue and 1 - y is  t h e  weight funct ion.  Thus, i f  
t h e  boundary condi t ions on Y are homogeneous, and it w i l l  
be shown i n  a moment t h a t  they  a r e ,  then t h e  equation 

together  with t h e  boundary condi t ions form a Sturm-Liouville 
problem and t h e r e  are an i n f i n i t e  number of poss ib le  eigen- 

An 5 
values  , 
(III.B.14) , (III.B.16) , and (III.B.17) a so lu t ion  of 
(III.B.9) is  

-2 

and eigenfunct ions,  Yno Thus, from 

- -  32 x2z 
Y 

3 e 

This s a t i s f i e s  t h e  d i f f e r e n t i a l  equat ion,  b u t  i n  order  t o  
s a t i s f y  t h e  boundary condi t ion a t  x = 0 a l l  the poss ib l e  
e igenfunct ions must be superimposed. This i s  permissible  

s ince  (III.B.9) is both l i n e a r  and homogeneous. 

- 

The Cn 's are eigenconstants  determined by t h e  boundary 
condi t ion  a t  x = 0 i n  the following manner. From 
(III.B.18) and (III.B.10, 11, 12, 13) one ob ta ins  f o r  all 
four fundamental cases 

- 
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(111 .B. 19) 
n=o 

Making use of the orthogonality property of a Sturm-Liouville 
function 

+1 1 (1 - Y2) Yn - Ym dY = 0 n f m  (I11 .B. 20) 
-1 

one obtains 

+1 +1 

- 1 Bfd (1 - Fa) yn d? = Cn (1 - y2) n dy 
-1 -1 

(III.B.21) 

Thus 

+1 

- -1 
- ,  

'n +1 
(I11 .B .22) 

-1 

Once the eigenfunctions and the fully developed temperature 
profiles are in hand for the four fundamental cases, the 
corresponding eigenconstants can be calculated from 
(III.B.22). It should be noted that it is actually efd 

ed at x = 0 that appears in this equation; this 
nificance for case two where it will be shown that 

- 

- 
is a function of x. 
It can be seen that in order for (III.B.18) to satisfy 

'fd 

conditions a e wall (III.B.lO, 11, 12, 13) 
y conditions must be imp0 
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C a s e  1 C a s e  2 

Y ( 1 )  = 0 Y ' ( 1 )  = 0 
(III.B.23,24) 

Y ( 4 )  = 0 Y 8  (-1) = 0 

C a s e  3 

Y ( 1 )  = 0 

Y E  (-1) = 0 

C a s e  4 

Y ' ( 1 )  = 0 

Y ( - 1 )  = 0 
(IPI.B.25,26) 

Since these  boundary condi t ions are homogeneous, t h e  d i f -  
f e r e n t i a l  Equation (III .B.16) toge ther  with these  condi t ions 
do indeed form problems of t h e  Sturm-Liouville type.  The 
so lu t ions  t o  t h i s  p a r t i c u l a r  problem can be represented i n  
t e r m s  of confluent  hypergeometric func t ions ,  a s  noted by 
Lauwerier. 33 However, t hese  funct ions are as y e t  only 

incompletely tabula ted  i n  t h e  l i t e r a t u r e  and it w a s  found 
necessary t o  so lve  t h e  equation d i r e c t l y  f o r  t h i s  study. 

The methods used f o r  c a l c u l a t i n g  t h e  eigenfunctions 
and eigenvalues f o r  t h e  four  fundamental cases w i l l  be 

described i n  Sect ion II1.G. 

3. The f u l l y  developed temperature p r o f i l e s  

I n  Sect ion I I I . B . l  t h e  f u l l y  developed temperature 
p r o f i l e  w a s  introduced, and was def ined as t h e  temperature 
p r o f i l e  occurr ing f a r  downstream of the  thermal en t ry .  I n  
t h i s  s e c t i o n  t h e  f u l l y  developed temperature p r o f i l e  for 

each of t h e  fou r  fundamental cases w i l l  be presented. It 

w i l l  be seen t h a t  t hese  p r o f i l e s  a r e  i n v a r i a n t  with x for 
cases one, t h r e e ,  and four;  furthermore,  for  these cases 
t h e  p r o f i l e s  can be discovered f r o m  physical  reasoning 

alone,  without so lv ing  t h e  governing d i f f e r e n t i a l  equation. 

- 
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a. C a s e  one 

thermal 
e n t r y  

0 

From (III .B.4) it is seen t h a t  t h e  w a l l  boundary con- 

d i t i o n s  here  a r e  

1 1 1 

f a r  
downstream 

0- e (1) 0- e (1) 0 -  0 (1) 
- > x  

Since the  flow is  laminar,  t he  temperature p r o f i l e  approaches 

a s t r a i g h t  l i n e  from 0 a t  ? = -1 t o  1 a t  = 1-1. The 
development of t h i s  p r o f i l e  appears something l i k e  t h a t  shown 
i n  t h e  following sketch.  

( I I I . B . 2 7 )  

This r e s u l t  could a l s o  have been obtained by solving 
the  governing d i f f e r e n t i a l  equat ion.  Since the  hea t  t r ans -  

f e r  t o  t h e  f l u i d  a t  

out  again a t  y = -1, the  f l u i d  temperature does not change 
with fi i n  t h e  f u l l y  developed region. Hence ( I I I . B . 3 )  

reduces t o  

? = 1 is conducted r i g h t  through and - 
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Thus 

A 

Applying t h e  

where C -  and C are t h e  cons tan ts  of in t eg ra t ion .  
2 

boundary condi t ions a t  7 = 4-1  and -1, 

respec t ive ly  

1 = c  + c 2  
1 

2 
o = -  c + c  

1 

Hence 

and 

which agrees  

ing . 

- 1 
c2 ' -5  c =  

1 

w i t h  the r e s u l t  obtained from physical  reason- 

b. C a s e  t w o  

From (III .B.5) the w a l l  boundary condi t ions  are 

I n  t h i s  case the equation for t h e  f u l l y  developed tempera- 
t u r e  p r o f i l e  i s  no t  obvious from physical  reasoning alone 

s i n c e  it is  not  a s t ra ight  l i n e ;  however, it can r e a d i l y  
be found from (III.B.3). The following sketch shows t h e  
manner i n  w h i c h  the temperature p r o f i l e  develops.  
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Equation (III.B.3) and the boundary conditions 
(III.B.5) are reproduced here for convenience. 

(I11 .B. 28) 

(I11 .B. 29) 

(I11 .B.30) 

Since the wall heat flux is uniform, energy balance 
considerations dictate that 

and 

ae (2) 

ax = 2  mf d 

(111 .B. 31) 

(I11 .B. 32) 

Furthermore, since the temperature profile is fully 
developed 
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H e n c e  ( I I I . B . 2 8 )  becomes 

I n t e g r a t i n g  w i t h  respect t o  9 

A p p l y i n g  the boundary condi t ion a t  = -1 

0 = 3 (-1 + +) + f (X) 
1 6  1 

H e n c e  

a e g  - - =(i; 3 - 3.3) 1 + - 1 a a. 
- 

Integrat ing w i t h  respect t o  y 

( 1 1 1 .  B,  33)  

(I11 .B. 34) 

( I I I . B . 3 5 )  

C o m b i n i n g  ( I I . C . l ) ,  ( I I I . B . 2 ) ,  and ( I I I . B . 3 5 )  

( I 1 1  .B. 3 6 )  

P e r f o r m i n g  the in tegra t ion ,  one obtains  
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Combining (III.,B.31) and (III.B.37) 

39 
2240 f p  = 2s - - 

(111. B. 37) 

(111. B. 38) 

Hence, inserting in (III.B.35) 

(III.B.39) 12 8 

Finally 

(I11 .B. 40) 

The fully developed temperature profile for case two con- 
tinually changes with x, but its dependence on y becomes 
invariant. 

- 

c. Case three 

From (III.B.6) the wall boundary conditions for this 
case are 

And here the development of the temperature profile appears 
as follows. 

thermal far 
entry downstream 
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It can be seen from the sketch that the equation for the 
fully developed profile is 

e g  = 1 (I11 .B. 41) 

d. Case four 

From (III.B.7) the wall boundary conditions are 

And physical reasoning shows the temperature profile to 
develop as shown in the sketch below. 

thermal 
entry 

The equation for the fully developed profile is 

(4) = - 1 (1 + y ,  
'fd 4 (I11 .B. 42) 

111. C. The Four Fundamental Solutions 

From (III.B.8) and (III.B.18) it can be seen that for 
the four fundamental cases the temperature profile is given 

by 
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03 32 2- - 3 AnX 
e = efd + cnYne (1II.C. 1) 

n=o 

In this section the above equation will be combined with the 

fully developed temperature profiles found in Section III'B.3 
to yield the fundamental solutions for each of the four 
cases. Numerical values of these solutions are presented 
in tabular and graphical form, the computational details 
being provided in Section 1II.G and Appendix B. 

1. Case one 

Combining (III.B.27) and (III.C.1) one obtains for the 
case one temperature profile 

32 2- 03 - yg Anx 
= 1 2 (1 + + 1 c n n  y e 

n=o 

This profile holds throughout the entire flow 
the walls, by definition, the above becomes 

(111. e. 2 )  

field. At 

Differentiating (III.C.2) and employing the definition 
(I1 .B.10) 

(1x1 .c. 3 )  

(It is understood that the proper case superscript goes 
with Cn and Yn.) 
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and 

(I11 .C. 3 )  

Now, from energy balance cons idera t ions  

(111 .c. 4 )  

Performing t h e  ind ica ted  i n t e g r a t i o n  y i e l d s  

CO 32 2- 

m 4 - YA(1)) c- - ~ ]  (III .C.5) 

32 2- - - y- hnx 
B u t  as x --., CO, e + 0,  and a l s o ,  f r o m  t h e  consid- 

erat ions discussed i n  Sect ion III .B.3,  Q(1) +- I Hence 
2 .  

Combining (III .C.5)  and (III .C.6) y i e l d s  

The fundamental so lu t ions  of t h e  f i r s t  kind a r e  summarized 
b e l o w .  
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n=o 

The last three fundamental solutions are presented in 
Figure III.C.l and Table III.C.l. 

2 .  Case two 

Combining (III.B.40) and (III.C.l), the case two tem- 
perature profile is found to be 

r 

J n=o 

(111 .C.8) 

At the walls the above becomes 

(111. c .9) 

n=o 

W 

n=o 

By definition for case two 

= I  

= o  
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And from energy balance considerations 

The fundamental solutions of the second kind are summarized 
below. 

The first two fundamental solutions are presented in 
Figure III.C.2 and Table III.C.l. 

3 .  Case three 

Combining (III.B.41) and (III.C.l), one obtains for 
the case three temperature profile 

n-o 

At the upper wall the above becomes, by definition 

(111. c -12 ) 

and at the lower wall it becomes 
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(I11 .C. 13) 
n=o 

Differentiating (III.C.12) and employing the definition 
(11. B. 12 ) 

(I11 .C. 14) 

And by definition for case three 

From an energy balance between the thermal entry 
and any x 

(s = 0) - 
- 
X 

m = 2 @(3) 00 (111 .C. 15) 
0 

Combining (III.C.14) and (III.C.15) and performing the 
integration 

(III.C.16) 

- y - But as x + w ,  e 4 0, and also, from the fully 
developed temperature profile, d 3 )  4 1. Hence 

03 

1 = - 3 1 --YA(l) 'n 
4 - 2  

(111 .C. 17) 

Combining (III.C.16) and (III.C.17) yields 
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n=o "n 

The fundamental solutions of the third kind are summarized 
below. 

- The three fundamental solutions that are functions of x 
are presented in Figure III.C.3 and Table PII.C.l. 

4. Case four 

The case four temperature profile is obtained by com- 
bining (III.B.42) and (III.C.l). 

n=o 

At the upper wall the above becomes 

(III.C.19) 

(111 .c. 20) 
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and at the lower wall, by definition 

Since the heat flux is specified at the upper wall in 
case four 

Differentiating, and combining (III.C.19) with (IX.B.17) 

From energy balance considerations 
- 
X 

(111 .c. 22) 
0 

From the preceding three equations, one obtains 

32 2- - hnx 
But as j7 --+ co, e --+ 0 ,  and from the fully developed 
temperature profile, e ( 4 )  --+x 1 . Hence 

m 

Combining the preceding two equations yields 

(I11 .C. 24) 

(1II.C. 25) 
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The fundamental s o l u t i o n s  of t h e  four th  kind are summarized 

bel ow. 

A n=o n 
- 

* The three fundamental s o l u t i o n s  t h a t  are funct ions of x 
a r e  presented i n  Figure III .C.4 and Table I I P . C . l .  

L e t  it be noted a t  t h i s  po in t  t ha t  the i n f i n i t e  series 

appearing i n  t h i s  s e c t i o n  converge very slowly a t  s m a l l  
values  of x .  Hence it i s  d e s i r a b l e  t o  seek another form 
of the s o l u t i o n s  i n  t h i s  region; such a form is  discussed 

i n  Sect ion 1 I I . E .  

- 
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TABLE I I I . C . l  

THE LAMINAR FUNDAIkENTAL SOLUTIONS 

F i r s t  Kind 
- 
X 

2 .5x10a4 

2. 5X1Ov3 

1. oxlo-” 
1. 5X10m2 

2 .5X10-2 

5.  ox10-2 

1 * oxlo-l 
7 .5X10-2 

1. 25x10-1 

1 (. 5 X l O - l  

2 .5~10- ’  

5. ox10- l  
0 

- 
X 

2 . 5 ~ 1 0 - ~  

2.5x10-” 

1. oxlo-” 
1.5X10-2 

2 .5X1OS2 

5. oxlo-2 
7 .5X10-2 

1.25X10-1 

2.5X10-1 

5. OXIO- l  

co 

(1) 
@oi 

19.145 - 
8.638 - 
5.242 -0,01704 

4.501 

3.687 

2.762 

2.357 

2.168 

2.079 

2.037 

2.002 

2.000 

2.000 

-0.1084 

-0,4572 

-1.242 

-1.643 

-1.832 

-1.921 

-1.963 

-1.998 

-1.999 

-2.000 

Second Kind 

0.04251 

0.08935 

0.1335 

0.1476 

0.1643 

0.1803 

0.1843 

0.1856 

0.1857 

0.1857 

0.1857 

-0.00050 

-0.005 00 

-0.01992 

-0.02915 

-0.04331 

-0.05888 

-0.06291 

-0.06420 

-0.06429 

-0.06429 

-0.06429 

0 (1) 
mi 

0.01447 

0.06596 

0.1625 

0.2103 

0.2859 

0.3993 

0.4526 

0.4777 

0.4895 

0.4951 

0.4997 

0.4999 

0.5000 

(2 1 
‘mi 

0.00050 

0.00500 

0.02000 

0.03000 

0.05000 

0.1000 

0.1500 

0.2500 

0.5000 

1.000 

03 
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- 
X 

2.5x10-* 

2 . 5 ~ 1 0 - ~  

1. oxlo-2 
1. 5X10-2 

2 .5X1OS2 

5. ox10-2 
7. 5X10-2 

1.25X10-’ 

2.5x10-’ 

5. oxlo-l 
co 

- 
X 

2 . 5 ~ 1 0 - ~  

2 . 5 ~ 1 0 - ~  

1. ox10-2 

1.5X10-2 

2 .5X10-2 

5. ox10-2 
7 .5X10-2 

1.25X10-’ 

2.5X10-’ 

5. O X l O - ’  

co 

TABLE 111. e. 1 (Continued) 

Third f i n d  

19.140 

8.638 

5.242 

4.501 

3.687 

2.703 

2.102 

1.291 

0.3831 

0.0337 

0 

- 
- 

0.001194 

0.009819 

0.05685 

0.2356 

0.3982 

0.6297 

0 8901 

0.9903 

1.000 

Fourth Kind 

g (4) (4 )  
ii ‘oi 

0.04299 - 
0.09434 - 
0.01535 -0.00120 

0.1776 -0.00982 

0 .. 2143 -0.0568 

0.279 -0.2356 

0.327 -0.398 

0.3938 -0.6297 

0.4685 -0.8901 

0.497 -0.9903 

0.5000 -1.000 

0 (3) 
mi 

0.01449 

0.06597 

0.1625 

0.2109 

0.2919 

0.4487 

0.5680 

0.7343 

0.9212 

0.9931 

1.000 

e ( 4 )  
mi 

0.00050 

0.00500 

0.0200 

0.0299 

0.0493 

0.0921 

0.1261 

0.1738 

0.2274 

0.248 

0.5000 

5 1  



111. D. The Nusselt Nurriber Relations 

As a matter of interest for workers used to dealing 
with the Nusselt modulus for internal flow geometries, some 
of the expressions formulated in Section I.E. have been 
combined with the laminar fundamental solutions given -in 
the previous section. The Nusselt numbers for the two most 
commonly treated cases, that of uniform and equal wall 
temperatures and that of uniform and equal wall heat fluxes, 
are presented in Figure III.D.l and Table III.D.l. 

52 



N a 
nN 

v) 
W 
X 
3 
J 
L L  

I- 

W 
5: 

a 

c3 z a 
v) 
W 
[y: 
3 
I- 
[y: 
W 

W 
t- 

a 

2 

v) a 
W rn 
I 
3 z 

53 



TABLE III.D.l 
LAMINAR NUSSELT NUMBERS FOR UNIFORM AND 

EQUAL WALL BOUNDARY CONDITIONS 

Equal Wall Temperatures 
- 
X 

2.5~10-~ 
2.5~10-~ 
1. ox10-2 
1 .5X10m2 
2. 5X10m2 
5.0xl o-2 

1 I ox10-l 
7 .5X1Ow2 

1.25X10-1 
1.5X10-1 
2.5X10-1 
5. ox10-l 

co 

Nu 

19.72 
9.951 
7.741 
7.582 
7.543 
7.541 
7.541 
7.541 
7.541 
7.541 
7.541 
7.541 
7.54072 

Equal Wall Heat Fluxes 

X Nu - 

2. 5x1f4 
2.5x10-" 
l.oxlo-2 
1 .5X1OW2 
2. 5X10e2 
5. oxlo-" 
7. 5X10m2 
1.25XlO-' 
2 .'5X10-' 
5. ox10-l 

03 

23.79 
11.86 
8.803 
8.439 
8.263 
8.236 
8.235 
8.235 
8.235 
8.235 
8.23529 
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- 
111. E. Relations Valid at Small x 

It was pointed out at the end of Section III,C that 
the infinite series appearing in the fundamental solution 
expressions converge very slowly for small values of x. 
Thus, in order to shorten the time of computation, it is 
natural to seek a limiting type of solution valid in the 
small x region. L e ~ e q u e ~ ~  has obtained such a solution 
for a uniform temperature wall, and others, for example, 
Eckert and Drake,21 have derived the counterpart for a uni- 
form heat-flux wall. These derivations will be presented 
here for the sake of completeness. 

- 

- 

1. The differential equation 

Recall from (III.B.1) and (III.B.2) that the energy 
equation for the entire region between the two planes is 

where 

(III.E.l) 

(I11 .E. 2) 

Now, very close to the thermal entry (very small z) the 
temperature profile growing from the heated wall penetrates 
only a very short distance into the flow field; that is, the 
thermal boundary layer is extremely thin. Thus, focusing 
attention on the upper wall, the entire region of the prob- 
lem is that area near x 0 and 1; = 1. In this region 
very close to the wall the velocity profile is nearly 
linear, and this suggests the possibility of replacing 
(III.E.2) with a straight line of the same slope at the 
wall. 

- 
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Thus 

u = - 3 y  + 3 
U m 

(I11 E. 3) 

for  7 = 1. 
the upper w a l l ,  l e t  

Converting t o  an o rd ina te  whose o r i g i n  is a t  

Then the  v e l o c i t y  p r o f i l e  becomes 

- 3'1 U - -  
U m 

And (III.E.l) becomes 

Combining the preceding t w o  equations 

(I11 .E. 4) 

(I11 .E. 5) 

(III.E.6) 

(111 .E. 7) 

T h i s  is the energy equation v a l i d  i n  t h e  region under con- 
s ide ra t ion .  

Since the problem here resembles t h a t  of heat t r a n s f e r  

from a f l a t  p l a t e ,  t he  p o s s i b i l i t y  of the ex is tence  of a 
s i m i l a r i t y  s o l u t i o n  suggests  i t s e l f .  Such a s o l u t i o n  does 
indeed exis t ,  and it w i l l  be der ived i n  the following two 
s e c t i o n s  f o r  the t w o  w a l l  boundary condi t ions  of i n t e r e s t .  

2 .  The uniform w a l l  temperature case 

H e r e  the w a l l  boundary condi t ion i s  

9- = 1  q=O (I11 .E. 8) 
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The s i m i l a r i t y  s o l u t i o n  t o  be sought i s  of t h e  f o r m  

e = ( 1 I I . E .  9) 

where 

(111 .E. 10)  

Combining ( I I I . E . 7 ) ,  ( I I I .E .9 ) ,  and ( I I I . E . l O )  one obta ins  
t h e  ordinary d i f f e r e n t i a l  equation 

( I I I . E . l l )  

The s o l u t i o n  of t h i s  equation is 

(111. E. 1 2 )  
2 

q = e = c  
1 

where C and C are cons tan ts .  From the boundary con- 

d i t i o n  ( I I I . E . 8 ) ,  and from (III .E.10) one obta ins  
1 2 

= 1  4 =0 e 

Hence ( I I I . E . 1 2 )  becomes 

a t  t h e  wal l .  The in tegra l  above vanishes ,  as can be seen 
by expanding t h e  exponential  i n  a series and i n t e g r a t i n g  
t e r m  by t e r m .  Thus 

c = 1  
2 

Now, by d e f i n i t i o n  8 = 0 a t  x = 0 ( 4  = m ) .  So 

(I11 .E. 1 2 )  becomes 

57 



o = c  1 (/e-'dq + 1 
4 =m 

Since the integral vanishes at 4 = 0, this can be written 
as 

e 
o = c  - 48 de + 1 

1 

From JahnI~e-Emde~~ 

J 
0 

Combining the preceding two equations, one obtains 

-3 e =  

Thus (III.E.12) becomes 

= 1 J  483 I? ( 5 )  0 

(I11 .E. 13) 

(111 .E. 14) 

(1II.E. 15) 

where CT is a dummy 
The fundamental 

variable. 
solutions sought are 0 and Bm. 

00 
Turning first to Qo0, (II.B.10) yields here 

& 

(I11 .E.16) 
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Combining ( I I I . E . l O )  (III .E.15) and (III .E.16) then 

produces 

1 
- 3  
X 
- -  

1 2  a , =  
1 00 - 

48' I'(?j) 

Evaluating t h e  cons tan t  y i e l d s  
1 
3 

- -  
a, = 1.23253 Z 
00 

(I11 .E .17)  

(111 .E .18)  

T h i s  fundamental s o l u t i o n  holds  f o r  bo th  eases one and 
three i n  t h e  region near x = 0 and a u n i t y  temperature 
w a l l .  

8 is  now found by performing t h e  i n t e g r a t i o n  

- 

m 
indica ted  i n  both (III.C.4) and (III .C.15) .  

So i n  t h i s  case 

e =  m 
24 

.L - 
483 ($) 

Thus 

0 

1 
3 
- 

dx 

Evaluating t h e  cons tan t  y i e l d s  

(I11 .E .19) 

(111 , E  .20) 

(111 .E .21 )  

(I11 .E. 2 2 )  
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This fundamental solution, like the one preceding, holds 
for both cases one and three. 

3 .  The uniform wall heat flux case 

In this case the wall boundary condition is 

a- = 1  (I11 .E. 23) q=0 

From (II.B.15) it is seen that this is equivalent to 

Here the similarity solution assumes the form 

1 - 
e = Z" 

where 

1 
- 3  
- -  

4 =fix 

(I11 .E. 24) 

(111. E. 25) 

(I11 .E. 26) 

Combining (III.E.7) (III.E.25), and (III.E.26) the follow- 
ing ordinary differential equation is obtained 

The solution of this equation is 

(I11 .E. 27) 

(I11 .E .28) 

where C and C are constants. Integrating by parts, 
the above becomes 

1 2 
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Introducing (III .E.25) y i e l d s  

Applying t h e  boundary condi t ion  (III .E.249, and employing 

(111. E. 26) 

(III .E.31) 

I n  a r r i v i n g  a t  t h i s  condi t ion use w a s  made of t h e  f a c t  t h a t  

( / e  e- ' = 0 
=0 

as can be seen by expanding t h e  exponential  i n  a series and 

in t eg ra t ing  t e r m  by t e r m .  
Now, by d e f i n i t i o n  8 = 0 a t  x = 0 ( 4  = m ) .  Thus 

(I 11. E. 3 0)  becomes 

J 
0 

so 

(111 .E. 32) 

0 
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From Jahnke-Emde 

Hence 

-12 
2 

c =  - 1 483 l? (4) 

And (III.E.30) becomes 

(I11 .E. 33) 

(I11 .E. 34) 

where CT is a dummy variable. 
Since eo0 occurs at Fj = 0 (6, = 01, the fundamental 

solution is 

1 
-3 
X 

- 
12 e =  

00 2 

483 r ($) 

Evaluating the constant yields 

1 - 
e = 0.670950 X' 
00 

(111. E. 35) 

(1II.E. 36) 

8 for this case follows directly from energy balance con- 
siderations (see (III.C.11)). 
m 

8 = 2% (I11 .E. 37) m 
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These fundamental solutions hold for both cases two - 
and four in the region near x = 0 and a unity 4 heat- 
flux wall. 

The limiting fundamental solutions derived in this 
section are indicated by the dashed lines on the fundamental 
solution curves in Section 1II.C. 

4. The Nusselt number relations 
- The Nusselt number relations for very small x are 

readily obtained by combining the preceding results of 
this section with those of Section 1I.E. This will be done 
here for the four fundamental cases. 

a. Case one 
- 

At very small values of x the temperature profile 
has not yet propagated to the opposite wall, so 
Hence (II.E.5) becomes 

4:;) = 0. 

(111. E. 38 1 

Introducing (III.E.17) and (III.E.21) one obtains 

Nu = 1 (111.1 

Thus 

(111. 1 Nu- = 

For most wall temperature ratios, the second term in the 
denominator is negligibly small compared with the first. 

6 3  



b. C a s e  t w o  
- 

H e r e  oi = 0 a t  very s m a l l  x,  so (II.E.7) becomes 

Combining the above w i t h  ( I I I .E.35)  and (III .E.37) 

1 Nu = 
0 1 

1 2  -3 

2 - 
48’ I?($) 

O r  

- 1 Nuo - 
1 - 

0.670950 2” - 2 (1 + 2 ) g  

(I11 .E. 41) 

(I11 .E. 42) 

(111. E. 43) 

Again,  fo r  m o s t  w a l l  hea t - f lux  r a t io s  t h e  second term is 
n e g l i g i b l y  s m a l l .  

c. C a s e  three 

I n  t h i s  case @At’ = 0, and (II .E.9) becomes 

(I11 .E. 44) 

Introducing ( I I I .E .17) ,  ( I I I . E . 2 1 1 ,  and (III.E.37) 
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1 
- 3  
X 
- -  

12 

N'O 

Or 

1 - -  
3 - 1.23253 x - 

2 Dh G i x  - N'O 

1 - 3.69759 S3 - 2 (two - t> 

(III.E.45) 

(111. E.46) 

d. C a s e  fou r  
- 

H e r e  e ( 3 )  = o a t  very s m a l l  x, so (II.E.U) o i  
b e c o m e s  

Combining the above w i t h  (III.E.35), (III.E.37), and 
(I11 .E. 21) 

- 1 Nuo - 
1 - 

-3 36 x - 2 z -  12 
1 - 2 - 

483 I? (p) 483 r(+) 

(111. E. 48) 

H e n c e  
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(111 .E.49) - 1 Nuo - 
1 2 - 

0.670950 L3 - 2% - 3 . 6 9 7 5 9 e  -D2)ZF 

G o  k 
- 

111. F. Relations Valid at Large x 

It can be seen from the fundamental solution expres- 
- 

sions in Section 1II.C that at very large values of x the 
infinite series become negligibly small and the solutions 
take on a much simpler form. Since in some applications x 
will be large, this section is included to set forth the 
fundamental solutions and Nusselt number relations valid in 
this region. These are the fully developed solutions, 
applying downstream of the thermal entry length. 

1. The fully developed fundamental solutions 

- 

These expressions are obtained in each case by setting 
the infinite series in the corresponding fundamental solu- 
tion in Section 1II.C equal to zero. 

a. Case one 
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b. C a s e  two 

d. C a s e  four  
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2. 

The fully developed Nusselt number relations follow 
from the preceding results and those of Section 1I.E. It 
should be pointed out that the shape of the temperature 
profiles becomes fully established long before the profiles. 
become fully developed in the sense outlined in Section III.B, 
and for this reason the Nusselt number relations become 
fully developed, or invarient with z, at x values 
approximately an order of magnitude smaller than do the 
fundamental solutions. 

- 

a. Case one 

Here one obtains 

- t  - (two twi - t;) 
- - 

N'O 
1 - -  2 wo 

Thus 

Nuo = 4 

(I11 .F. 1) 

(I11 .F. 2) 

= 4. (III.F.3) 
N'O 

Therefore, when twi # two, 
When twi = two, (III.F.2) is indeterminate and other 
means must be employed to evaluate Nuo. Combining the 
appropriate Nusselt number expression of Section 1I.E with 
the appropriate general fundamental solutions of Section 
1II.C yields 
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As z becomes large this expression approaches 

Thus 

- - (III.F.4) = 8 A2 when twi two N'o 3 0 

In Section 1II.G it is found that A: = 2.82777, so 

(I11 .F. 5) - Nuo = 7.54072 when twi - two 

b. Case two 

Combining (II.E.7) with the appropriate fully developed 
fundamental solutions in Section III.F.l 

(111 .F. 6) 1 Nu = 

0 2z + + (22 - &)(--q) %i - 2x (1 + -) %i 
%O 

Thus 

- - 140 
N'O %i 

. %o 
26 - 9 -  

Note that when Gi = xo, Nuo = 8.23529 
and when Gi = 0, Nuo = 5.38462 

(I11 F ,7) 

(I11 .F. 8) 
(1II.F. 9) 
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For convenience, (III.F.7) is plotted in Figure III.F.l. 
By referring to the curve one can see the strong influence 
of heat flux ratio on the laminar case two Nusselt number. 

c. Case three 

For this case 

- Nuo - (111. F. 10) 

Hence, when Gi f 0, Nuo = 4 (I11 .F.ll) 
When 
one, the entry length expressions must be used, From 
(II.E.9) and the fundamental solution expressions of 
Section 1II.C 

xi = 0 (III.F.10) is indeterminate, and, as in case 

(I11 .F. 12) 

- 
for the case of Gi = 0. And as x becomes large this 
expression approaches 

4COYA (1 1 

4 O Y p  

- - 
C -- N'O 

% 
Nuo - - - 16 A2 

3 0  (III.F.13) Hence, when Gi = 0, 
In Section 1II.G it is found that ci = 0, Nuo = 4.8608 (I11 .F. 14) 

A: = 0.91140, so when 
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N'O 
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- 

Figure III.F.l. Laminar Fully Developed Constant 
Heat Flux Nusselt Number 
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d.  C a s e  four  

H e r e  one obta ins  

N'O 

Thus, when "-13, f 0,  Nuo = 4 (I11 .F. 1 6 )  

And when Go = 0,  Nuo = 0 ( I I I . F . 1 7 )  

111. G .  Solut ion of the Sturm-Liouville Equation 

1. General cons idera t ions  

It w i l l  be r e c a l l e d  from Sect ion I I I . B . 2  tha t  the 

following Sturm-Liouville equation r e s u l t s  f r o m  t h e  sepa- 
r a t i o n  of v a r i a b l e s  i n  the energy equat ion 

(I11 .G. 1) -2 Y" + A'; (1 - y ) Yn = 0 n 

Up t o  t h i s  po in t  it has  been t a c i t l y  assumed tha t  the eigen- 

func t ions ,  Yn, are known q u a n t i t i e s ,  b u t  no mention w a s  
made of the means by which these  numbers w e r e  obtained. And 
t o  be s u r e ,  t h e  reader  i n t e r e s t e d  only i n  obtaining answers 
t o  a p a r t i c u l a r  p r a c t i c a l  problem need n o t  concern himself 

w i t h  such detai ls ;  the previous s e c t i o n s  along with Table 

I I I . C . 1  and Figures  I I I . C . l  through III .C.4 should s u f f i c e  

for h i s  purposes. However, s i n c e  t h e  bulk of t h e  e f f o r t  
involved i n  preparing the aforementioned f i g u r e s  is  centered 

on the s o l u t i o n  of ( I I I . G . l ) ,  it is  only proper t h a t  t h i s  
s o l u t i o n  be discussed. 

For t h e  l o w e r  values  of An t h e  equation must be solved 

numerically,  and t h e  method used for t h i s  is set  f o r t h  i n  
the succeeding sec t ion .  But for t h e  h igher  values  of An 
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it is  poss ib l e  t o  obta in  an a n a l y t i c  asymptotic s o l u t i o n  

v a l i d  near the w a l l s ,  and t h i s  is  done i n  Sec t ion  III.G.3. 

2 .  Solut ion a t  t h e  lower eigenvalues 

As mentioned i n  Sect ion III.B.2, the eigenfunct ions 
sought are confluent  hypergeometric func t ions ,  and, w e r e  
these s u f f i c i e n t l y  w e l l  t abu la t ed ,  t h e  problem a t  hand 

would be reduced t o  nothing more than opening the proper 

book of tables. Unfortunately,  they are no t  tabula ted  f o r  
the arguments involved here. 

The  h i s t o r i c a l  approach t o  problems of t h i s  s o r t  has  
been t o  employ the method of Frobenius. T h i s  w a s  a t tempted-  

by t h e  au thor ,  b u t  it was found t h a t  t he  series coeff ic ients  
( w h i c h  are func t ions  of A )  diverge before  diminishing, 

thus posing a severe accuracy problem. 

The  advent of the e l e c t r o n i c  d i g i t a l  computer has made 
f e a s i b l e  an a l t e r n a t i v e  t o  the above procedure cons i s t ing  
of an i t e r a t i v e  method proposed by Berry and de P r i m a .  

The e s s e n t i a l s  of t h i s  method are summarized here. 

5 

I f  i s  the  k th  approximation of the des i r ed  

va lue ,  A;, and ( Y n ( F ) ) k  is  a so lu t ion  t o  (III.G.l) 

with h2 = (1;) such tha t  (Yn) satisfies the r e q u i s i t e  

boundary condi t ion  only a t  F = -1; and f u r t h e r  i f  
k k 

+1 

(1x1 .G. 2) 

( w ( q ) ,  the weight func t ion ,  is  (1 - y’) here) then t h e  
next approximation i s  given by 
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This sequence of approximations converges monotonically to 

A$ 
condition at y = 1. ln (III.G.3) the plus (+) sign is 
associated with the condition of 
(-) sign with -Yn(l) = 0. 

Computationally, the method consists of assuming a 
value for A: and a value for Yn(-l) or YA(-l) (which- 
ever is not specified as zero by the boundary condition), 
and integrating (III.G.1) numerically as an initial value 
problem. In general, the resulting solution will not be 
normalized, that is 

the value that permits satisfaction of the boundary - 

YA(1) = 0, and the minus 

+1 

-1 

But noting that (III.B.16) is linear, it follows that 

where 

1 
+1 

le= n 

J 
-1 

So the factor 
condition (III.G.2). Next the assumed value of A: is 
corrected by (III.G.3), and the process is repeated until 
the boundary condition at y = 1 is satisfied. The last 
iteration determines An and yields Yn(F). Since values 
for Yn(y) were stored in the computer after the final 
iteration it was a simple matter to calculate the eigen- 
constant, Cn9 from (III.B.22) by a Simpson's rule inte- 
gration. 

Kn is then computed and applied to satisfy 

- 
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The computations were performed on a Burroughs 220 

Electronic Digital Computer at the Stanford University 
Computation Center. Further details of the computational 
procedure are contained in Appendix B. 

The eigenvalues and pertinent combinations of constants 
are presented in Table III.G.1, and sketches of some lower . 
eigenfunctions are given in Figures III.G.l through III.G.3. 
It should be pointed out that results are not given for 
n = 0 for case two since the eigenfunction in that instance 
is a constant and the eigenconstant is zero. 

3 .  Solution at the higher eiqenvalues 

It is possible to find an asymptotic solution to 
(III.B.16) that obviates the need for carrying out the 
numerical integration discussed in the preceding section 
for all but the first few eigenvalues. This asymptotic 
solution employs the WKBJ approximation (after Wentzel, 
Kramers, Brillouin, and Jefferies), and was first used in 
convective heat-transfer work by Sellars, Tribus, and 
Klein.57 Applying this method, one proceeds as follows. 

Let 

Y = e  g ( Y )  
n (111. G. 4) 

Then from (III.B.16) 

+ h2 n - 9') = o  

Seeking an asymptotic solution of the form 

+ Ai1g2 + ... 

(I11 .G. 5) 

(111 .G. 6) 

this equation is substituted into (III.G.5). 
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To s a t i s f y  t h e  equation f o r  a l l  n the c o e f f i c i e n t s  of 

each power of An must vanish; thus  one obta ins  

(I11 .G. 7) 

and 

t h e  remaining 'n 9 
Since t h e  s o l u t i o n  is t o  apply f o r  l a r g e  
t e r m s  i n  (III.G.6) are neglected.  Combining (III.G.4), 
(III.G.6) , (III.G.7) , and (III.G.8) 

J 
0 

J 

(I11 .G. 9) + H e  0 
- G e  - 

1 yn - 
(1 - 1794 

T h i s  i s  the  WKBJ approximation. Changing t o  a more tracta- 
ble form 

J J - L 0 - 
1 'n - 

(III.G.lO) 

This  equation w i l l  be patched i n t o  another approximate 

s o l u t i o n  of (III.B.16) v a l i d  only near a w a l l .  

a .  The inner  w a l l  
- 

N e a r  the inner  w a l l  y 4 -1. Let t ing  ? = - 1 + z ,  

1 - y2 = 22  near the w a l l .  Thus (III.B.16) becomes 

Y; + h2 22 Yn = 0 
n 
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w h e r e  Y = Y ( z ) .  This is  a f o r m  of B e s s e l ' s  equat ion having 
the s o l u t i o n  

For large An t h i s  has the asymptotic f o r m  

3 3 

G COS(+ 7/- Anz 3- - -) 5n 6 -  
1 2  
1 1  
4 4  

2 2  

yn 

( I I I . G . 1 2 )  

D i r e c t i n g  a t t e n t i o n  back t o  the WKJ3J f o r m  ( I I I . G . l O ) ,  no te  
t ha t  

= - E 4 + 1- dz 
0 

So near the i n n e r  w a l l  ( f o r  s m a l l  z) 

H e n c e  ( I I I . G . l O )  becomes 

r -  1 3 - 
- Go cos [$ Anz2 -($ An + (b) - 

'n ( I 1 1  .G. 1 3 )  
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In order  t o  patch (III.G.12) and (III.G.13) it is apparent 
t h a t  one must take 

Go = -d* (I11 .G. 14) 

and 

5?r + H cos G COS - = cos (f An + $I) (III.G.15) 12 1 12 1 

577- s i n  = s i n ( %  An + $) (III.G.16) G s i n  - 
1 12 + H1 12 

@, and thus  G and H1, w i l l  be determined la ter  when 
t h e  appropr ia te  boundary condi t ions are brought i n t o  con- 

s i d e r a t i o n .  

1 

b. T h e  ou ter  w a l l  
- 

Near the ou te r  wal l  y +  1. Le t t ing  7 = 1 - <, 
1 - 7" = 2< near the wal l .  Then (III.B.16) becomes 

2 Y" + An 2c Yn = 0 n 

w h e r e  Y = Y ( c ) .  A s  before ,  the s o l u t i o n  of t h i s  equation 

i s  

1 - 
Yn = G2<*Jl - (9 An$)+ H 2 C 2 J  - -  (9 Anct) (III.G.17) 

3 3 

'n And aga in ,  f o r  large 

(111 .G. 18) 
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H e r e  the in tegra l  appearing i n  ( I I I . G . l O )  becomes 

So ( I I I . G . 1 0 )  becomes 

3 - 

[* hnC2 -($ An - $5). ( I 1 1  .G .19)  
cos 

1 1  
2 4  c 4  

A n d  patching ( I I I . G . 1 8 )  and ( I I P . G . 1 9 )  requires tha t  

5n + H cos = cos($ An - $5) ( I I I . G . 2 0 )  1 2  G COS - 
2 1 2  2 

57J s i n  JL 1 2  = s i n ( $  - $5) ( I I I . G . ~ ~ )  
+ H2 

G s i n  - 
2 1 2  

Now the four  sets of boundary condi t ions  w i l l  be discussed. 

c. C a s e  one 

H e r e  the boundary condi t ions  are 

Y(-1) = 0 

Y ( 1 )  = 0 

A p p l y i n g  ( I I I . G . 1 1 )  a t  the inne r  w a l l  it is found tha t  ,- e .  A - 
H = 0 s ince  z2J  (e An=') does no t  approach zero 

1 
3 

- -  1 
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w i t h  z .  Then f r o m  ( I I I . G . 1 5 )  and ( I I I . G . 1 6 )  

so 

T h i s  d e m a n d s  

( I 1 1  .G. 2 2 )  

( 1 I I . G .  2 3 )  

N o  genera l i ty  is sacrificed if n = 0. A n d  f r o m  ( I I I . G . 1 6 )  

and ( I I I . G . 2 3 )  

G = 1  
1 

Thus near t he  i n n e r  w a l l  

( I I I . G . 2 4 )  

( I I I . G . 2 5 )  

A t  the  o u t e r  w a l l  H = 0 fo r  the s a m e  reason tha t  
2 

H = 0 a t  the inner .  So 
1 

C o m b i n i n g  t h i s  w i t h  ( I I I . G . 2 3 )  y ie lds  

5 A, = 2n + 7 , n = 0,  1, 2 ,  - 0 -  

A l s o  

( 1 1 1  .G. 2 6 )  

( I I I . G . 2 7 )  

G = ( - l ) n  
2 

( I 1 1  .G. 2 8 )  
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So near the outer wall 

(I11 .G. 29) 

The asymptotic eigenvalue expression is now in hand, but 
the eigenconstants have yet to be determined; they are 
given by (A.9). From (III.G.25) 

so 

L L  

(111.G.30) 

(111. G. 31) 

Noting from (III.G.25) that at = -1, 'n vanishes for 
all values of h 

(2)- = o  
y= -1 

(III.G.32) 

Passing to the outer wall, from (III.G.29) 

= (-l)n+l I~ 'JL @ An;)- 
(III.G.33) 3 3 
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So a t  the ou te r  w a l l  

N o t e  t ha t  a t  t h i s  w a l l  Yn = 0 only for  h = An, 

so  9 m u s t  be c o m p u t e d  f r o m  ( I I I . G . 1 7 ) .  
bY 

n 

As + 0 the first three t e r m s  vanish ,  b u t  s i n c e  

s i n ( $  An - ~3 - 3) 1 2  H =  
2 s i n  (- $) 

( f r o m  ( I I I . G . 2 0 )  and ( I I I . G . 2 1 ) ) ,  then  

so 

E m p l o y i n g  (A. 9)  y ie lds  

( 1 I I . G .  34)  

(I11 .G. 35) 

( 1 I I . G .  3 6 )  

1 - -  2 
3 n+i  2 b 

cn = ( - 1 )  - 6  TT I? ($)hn  
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Also 

1 - -  
n+ 1 3 

= (-1) 1.012788 An 

and 

1 
3 

- -  
= 1.012788 An 

d. C a s e  t w o  

H e r e  t h e  boundary condi t ions are 

Y'(-1) = 0 

Y'(1) = 0 

D i f f e r e n t i a t i o n  of (III.G.ll) gives  

(1II.G. 37) fi - H1 2 J2- 
3 

T o  s a t i s f y  t h e  boundary condi t ion a t  t h e  inner  w a l l  

G = O  
1 
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Then f r o m  (III .G.15) and (III .G.16) 

s i n  (5 xn + ~p - L) = o 1 2  

from which 

Again n is taken t o  be zero.  It fol lows t h a t  

H = 1  
1 

So near t h e  inne r  w a l l  

1 
2 
- 

= z J  
1 
3 

- -  'n 

( 1 I I . G .  38)  

(I11 .G. 39) 

(111 .G.40) 

A s i m i l a r  condi t ion  exists a t  t h e  o u t e r  w a l l ,  r e s u l t i n g  

i n  

sin( '  - @ - &) = o 

1 = 2n + - , n = 0, 1, 2 ,  . - -  An 3 

A s  be fo re ,  t h i s  r e s u l t  l e a d s  t o  

n 
H = (-1) 
2 

So near the o u t e r  w a l l  

(I11 .G .41) 

(111 .G .42 ) 

(III.G.43) 

Now, i n  order  t o  f i n d  t h e  expression for  t h e  eigen- 

a( ay:) must be determined a t  both  w a l l s .  ah c o n s t a n t s ,  
6 
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D i f f e r e n t i a t i n g  (I11 .G.40) y i e l d s  

(III.G.44) 

A t  z = 0 both of the above t e r m s  vanish,  so 

N e a r  the  ou te r  w a l l  G = G ( A )  SO 
2 2 

Now s i n c e  

s i n  (G - % 
2 s i n  (- $) 

+ Q) G =  

it follows t h a t  

n n  dG2 - (-1) - 
fi 

- -  
dAn 

Thus, a t  the ou te r  w a l l  

(111 .G. 45) 

(III.G.46) 

And f r o m  (III.G.40) and (III.G.43) 
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1 
1 - - -  3= 3 

Y n ( - l )  = 1 ’n 

2’ r(+) 

1 
1 - - -  

33  3 
Y n ( l )  = ( - l I n  1 ‘n 

So employing ( A . l O )  yields 

Also 

and 

5 
4 - - -  n+i 36 3 cn = (-1) - - 7 r ( 4 )  

5 
3 

- -  n+ 1 
= (-1) 0.3001255 An 

(111 .G .48f 

(I11 .G. 49) 

(III.G.50) 

- -  5 - 0.3001255 An 3 

86 



e. C a s e  t h r e e  

H e r e  t h e  boundary condi t ions are 

Y '  (-1) = 0 

Y ( 1 )  = 0 

Proceeding as before  it is found t h a t  a t  t h e  inner  w a l l  

A 77- 77- 
12 4 n 

H = 1  
1 

Thus 

(III.G.51) 

The condi t ions a t  t h e  ou te r  w a l l  demand t h a t  

s i n  ( z  hn - rp - $j) = o 

so 

An = 2n + 1, n = 0,  1, 2 ,  = - a  (I11 .G.52) 

And for the  region near t h e  ou te r  w a l l  it is found t h a t  

(I11 .G. 53) 

Now, YA(1) by (III.G.34), Y n ( - l )  by 

(III.G.48), and by (III.G.36); so from (A.ll) 
y=1 
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there r e s u l t s  

c: 
c = (-1) n+l 2 * 66 r(s) A- J 
n ,IT n 

Also 

n+ 1 
= (-1) 1.102658 A i 1  

and 

1 
3 

- -  
= 1.012788 An 

f .  C a s e  four  

H e r e  t h e  boundary cond i t ions  a r e  

Y ( - 1 )  = 0 

Y ' ( 1 )  = 0 

A t  the inne r  w a l l  there o b t a i n s  

H = O  
1 

(I11 .G. 54) 

G = I  
1 
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so 

From the condi t ions a t  t h e  ou te r  w a l l  

s i n  (5 - Q - z) n = o 

so 

= 2n + 1, n = 0,  1, 2 ,  'n 

N o t e  t h a t  t h e  eigenvalues f o r  cases t h r e e  and four  are 
i d e n t i c a l ;  indeed, t h i s  is t o  be expected s i n c e  t h e  w a l l  
boundary condi t ions  f o r  t h e  t w o  cases  a r e  symmetrical. 

For the region near the outer  wal l  it is  found t h a t  

is  given by (III .G.31) ,  Y n ( l )  by (III .G.49) ,  

by ( I I I .G.47) ,  so (A.12)  y i e l d s  

6 
n 2  

A l s o  

n+i 32 - 1-1 c Y ' ( - l )  = (-1) n n  

0.2756644 A - l  n+ 1 
= (-1) n 
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and 

5 
7 

3x r($) - y  
c Y (1) = - -  

7T 2’ 
n n  4 .(;)In 

5 
3 

- -  
= - 0.3001255 In 

The numerical r e s u l t s  of t h i s  s e c t i o n  a r e  t o  be found 

i n  Table I I I . G . l .  N o t e  t h a t  t he  a c t u a l  values  r ap id ly  

approach these  asymptotic r e s u l t s .  
It should be pointed ou t  t h a t  t h e  eigenfunct ions i n  

t h i s  s e c t i o n  are not  normalized i n  t h e  sense discussed i n  
the preceding sec t ion ,  so t h e  ind iv idua l  values  of 
Yn9 and YA d i f f e r  by a m u l t i p l i e r  f r o m  those found i n  
Sect ion I I I . G . 2 ;  howeve’r, t h i s  f a c t o r  e n t e r s  i n  such a 
manner t h a t  the a c t u a l  products used, CnYn and CnYA3 

are i d e n t i c a l  t o  those i n  Sect ion I I I . G . 2 .  

Cn, 
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IV. TURBULENT FLOW 

I V .  A. Survey of Previous Studies  

I n  comparison with i t s  l a m i n a r  counterpar t ,  t h e  par- 
a l l e l  plane thermal entrance length  problem f o r  t u rbu len t  

flow has received l i t t l e  a t t e n t i o n  i n  t h e  l i t e r a t u r e .  
Although it is  perhaps the more i n t e r e s t i n g  f r o m  t h e  stand- 
po in t  of practical app l i ca t ion ,  t h e  tu rbu len t  s o l u t i o n  
r equ i r e s  t h e  use of more complex v e l o c i t y  and d i f f u s i v i t y  

r e l a t i o n s ,  and thus i s  a less a t t r a c t i v e  veh ic l e  f o r  explor- 
ing  new mathematical techniques.  

The work t h a t  appears can be divided i n t o  t h r e e  general  
ca t egor i e s ,  d i s t inguished  by the method of s o l u t i o n  employed: 

(1) i n t e g r a l  methods 
( 2 )  direct so lu t ion  of t h e  governing p a r t i a l  d i f fe r -  

e n t i a l  equation on an analog o r  d i g i t a l  computer 

(3 )  computer so lu t ion  of the eigenvalue problem 
r e s u l t i n g  f r o m  separa t ing  the va r i ab le s  of t h e  
governing d i f f e r e n t i a l  equation 

Examples of these methods occurring i n  t h e  l i t e r a t u r e  are 
b r i e f l y  discussed below; a more detailed treatment can be 

found i n  the e x c e l l e n t  survey of C e s s .  10 

I n t e g r a l  Methods 

D e i s s l e r ”  has  t r e a t e d  the c i r c u l a r  tube geometry w i t h  

uniform w a l l  heat f l u x  and w i t h  uniform w a l l  temperature,  

and the p a r a l l e l  planes geometry w i t h  uniform and equal 
w a l l  heat fluxes. C e s s ”  a lso deal t  w i t h  t he  l a t t e r  prob- 

l e m .  H e  employed the Nikuradse v e l o c i t y  p r o f i l e  and 

M a r t i n e l l i  temperature p r o f i l e ,  and assumed equal d i f f u -  
s i v i t i e s  of momentum and heat t r a n s f e r .  

D i r e c t  Computer Solut ion of D i f f e r e n t i a l  Equation 

Jenkins ,  e t  al.*’ solved t h e  c i r c u l a r  tube w i t h  uni-  
f o r m  w a l l  heat-f lux problem, assuming eH/cM = 1. 
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Schlinger, et a1.54 treated the parallel planes case with 
uniform, but unequal, wall temperatures. 

Eigenvalue Problem 

Lat~ko'~ presented the first treatment of the turbu- 
lent thermal entrance length problem. He dealt with the 
uniform wall temperature circular tube case, and employed 
a 1/7-power velocity profile. Beckers3 extended this work, 
as did Sleicher and Tribus," who also considered the uni- 
form wall heat-flux case, Sparrow, Hallman, and Siegel" 
presented a solution for this latter problem. 
and P~ppendick~~ treated the parallel planes with uniform 
and equal wall temperatures, but they do not present the 
eigenvalues and constants. 

Both Berry" 

9 Cess, and Sternling and S l e i ~ h e r ~ ~  demonstrated the 
utility of the W K B J  approximation for finding the higher 
eigenvalues and constants for turbulent tube flow. 

solutions should be mentioned. Harrison and Menke24 
extended Martinelli's work to the uniform, but unequal, 
wall heat-flux case for parallel planes, and Barrow2 also 
dealt with this problem. Seban5' treated the ease of uni- 
form and equal wall temperatures. 

Finally, several fully developed temperature profile 

IV. B. Mathematical Formulation and Method of Solution 

In this section the general solution of the energy 
equation will be developed for turbulent flow between par- 
allel planes in a manner directly parallel to that for the 
laminar case in Section 111. Some of the mathematical steps 
that have identical counterparts in Section I11 are omitted 
to avoid repetition. 

1. The differential equation and boundary conditions 

From (II.B.S), the energy equation for turbulent flow 
between parallel planes is 
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(IV.B.1) 

For computational purposes the equation is henceforth 
written as 

(IV.B.2 

U Unlike the laminar case, an expression for - as a - 
function of y cannot be derived from analysis alone, but 
rather is obtained from experimental investigations. Simi- 

and - in the equation imposes larly, the presence of - 
complications over the laminar solution. These matters will 
be dealt with later in this section. Let it suffice at this 
point to say that the diffusivity expressions employed are 
valid only in certain Reynolds and Prandtl number ranges, 
and that numerical computations are performed only for 
Re = 2x104, 3x104, and 5x104, and Pr = 0.01 and 0.70. The 
Pr = 0.01 calculations are limited to the fully developed 
temperature profile cases. 

EM 
V EM 

The boundary conditions on (IV.B.2) for the four 
fundamental cases are given by (III.B.4) through (III.B.7). 
Again, these boundary conditions must be made homogeneous, 
and this is ac’complished by the same change of variables. 

- 
e k e - efd (IV.B.3) 

This yields the equation 

and the homogeneous boundary conditions (III.B.lO) through 
(III.B.13). 



2. Eddy diffusivity for momentum transfer 

Before solving (IV.B.4) one must have in hand a rela- 
- 

tionship between - EM and y suitable for the Reynolds 
number range of interest. The expression used for this 
work is a modified form of the expression suggested by 
Cess," which is itself a combination of Van Driest's 
expression near the wall and Reichardt's middle law. The 
attractiveness of Cess's expression lies in the fact that 
it is a single equation applicable over the entire flow 
field; thus, the usual patching of equations is obviated. 
In Cess's nomenclature his expression is 

Y 

where K and A+ are constants with values of 0.4 and 26, 

respectively. This equation was developed for application 
to circular tubes, hence the radius terms. 

Applying the expression to the parallel planes geom- 
etry, there results 

(1V.B. 6) 
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To determine the suitability of the equation for parallel 
planes application, it was compared with the experimental 
data for air reported by Page, et al. In so doing it was 
found that a "bumping factor" modification provided a better 
fit to-the data for the 20,000 to 50,000 Reynolds number 
range studied herein. The resulting expression is 

(1V.B. 7) 

where K = 0.4 and A+ = 26. Figure IV.B.l shows the 
shape of this dif fusivity profile. 

In order to use this expression it is necessary to 
+ have a relation between yo and Re. It follows from the 

+ definition of y' and yo 

(1V.B. 8) 

and from the defining equation for f 

2 U A rn 
70 = fP 2g 

C 
(IV.B.9) 

that 
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y', = R e  fl (1V.B.  10)  

The experimentally determined f r i c t i o n  factor expression 
given by S ~ h l i c h t i n g ~ ~  

- -  - 4.0 loglo (Re fi)- 0.40 ( I V .  B. 1 1 )  
fi 

can be used t o  provide the  l i n k  between f and R e .  T h i s  

equa t ion  i s  plot ted i n  Figure I V . B . 2 .  

I n  many s tud ie s  the D e i s s l e r l '  expression is employed 
for  7 'lvl near a w a l l ,  so it is of interest t o  note  the 
close agreement b e t w e e n  it and the V a n  D r i e s t  r e la t ion  
( t o  w h i c h  the  C e s s  r e la t ion  reduces i n  the w a l l  region) as 
s h o w n  i n  Figure I V . B . 3 .  

3. V e l o c i t y  p rof i les  

used i n  U T h e  ve loc i ty  prof i le  expression, - 
Um ' 

( I V . B . 4 )  is  obtained f r o m  the t;- re la t ion  ( I V . B . 7 )  and 
the shear stress d i s t r i b u t i o n .  From force balance consid- 
erat ions it is s i m p l e  t o  s h o w  tha t  

Y ' c = - ' c  - 
O yo 

(IV. B. 1 2  1 

i n  the passage b e t w e e n  the paral le l  planes. A n d  f r o m  the 

d e f i n i t i o n  of eM 

(1V.B. 1 3 )  

Thus 

C o m b i n i n g  w i t h  ( I V .  B. 9) and rearranging 
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Figure IV.B.3. Comparison of the Van Driest and Deissler 
Eddy Diffusivity Expressions Near a Wall 
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where 

u n _ L  
- u  m 

(1V.B .14) 

Changing coordinates  so t h a t  t h e  independent v a r i a b l e  i s  

zero a t  the lower w a l l ,  l e t  

q = 1 + y  

Then 

f R e  
8 

so 

- c 

u -  

- 
But a t  t h e  w a l l ,  u = 0. Thus 

(1V.B. 15) 

Numerical i n t e g r a t i o n  of t h i s  simple quadrature  provides 

the necessary r e l a t i o n  fo r  u. 
- 

The v e l o c i t y  p r o f i l e s  ca l cu la t ed  i n  t h i s  manner are 
seve ra l  values  of Reynolds number are p l o t t e d  i n  Figure 

IV.B.4 i n  t h e  f o r m  of u w h e r e  + 

(IV. B .16) 

G o o d  agreement w i t h  the data of Page, e t  a l .  is shown. 
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Actual ly ,  t h e  use of ( I V . B . 1 1 )  f o r  f r i c t i o n  factor 
c a l c u l a t i o n  is  not  completely c o n s i s t e n t  with t h e  use  of 
( IV.B.7)  f o r  - EM s ince  one expression should f o l l o w  - f r o m  
t h e  other. Herein it w a s  e l ec t ed  t o  choose ( IV .B .7 )  as t h e  
"s tandard,"  and t h e  f r i c t i o n  factor w a s  then ca l cu la t ed  i n  
the  following manner. 

v y  

For a given Reynolds number, a t r i a l  f w a s  obtained 
from ( I V . B . 1 1 )  and t h i s  w a s  used with ( I V . B . l O )  and ( IV.B.7)  

t o  ob ta in  an expression f o r  7 ( 9 ) .  
c ( 9 ) .  

Then (IV.B.15) led t o  
From Sect ion 1 I . B  it is  known t h a t  

J 
-1 

This i n t e g r a l  w a s  computed numerically and found t o  d i f f e r  

from 2 f o r  t h e  f i r s t  f t r i a l ;  however, t h e  computation 
suggested t h e  next t r i a l ,  and t h e  process w a s  completed 

u n t i l  convergence w a s  obtained. Several f r i c t i o n  f a c t o r s  
ca l cu la t ed  i n  t h i s  manner, and hence c o n s i s t e n t  with 
( I V . B . 7 1 ,  are p l o t t e d  on Figure PV.B.2.  

4. Eddy d i f f u s i v i t y  f o r  h e a t  t r a n s f e r  
- 

I n  add i t ion  t o  the  - EM and u r e l a t i o n s ,  an expres- 
Y 

s ion  is needed f o r  

can proceed, 
t h i s  purpose he re in .  Figure IV.B.5 i n d i c a t e s  t h e  r e s u l t s  
of h i s  ana lys i s .  

- EH before  t h e  s o l u t i o n  of (IV.B.4) 

The ana lys i s  of Jenkins28 is  employed f o r  
EM 

For t h e  0.01 P r  case Jenkins '  r e s u l t s  w e r e  appl ied 
without modification. However ,  t o  f a c i l i t a t e  numerical 
computation h i s  d i f f u s i v i t y  r a t io  expression w a s  approxi- 
mated by more s i m p l e  algebraic r e l a t i o n s .  These r e l a t i o n s ,  
f i r s t  employed by Leung,34 are set f o r t h  below. 
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Pr = 0.01 

range of application 

EM In - < 0.6 v 

EM 0.6 In - < 3.0 v 

M 
V 

E 
3.0 5 In - < 4.0 

E 
4.0 In < 10.0 

M E 

v -  In - > 10.0 

relation 

- -  EH - 0.010 
EM 

EM E - -  - 0.018 + O.O16(In 7 - 1.0) 
EM 

EM - -  EH - 0.05 + 0.05(In - - 3.0) 
v M E 

EM - -  EH - 0.10 + 0.15(In- - 4.0) 
V EM 

- -  EH - 1.0 
EM 

For the 0.7 Pr case the data of Page, et al. 
indicates that the Jenkins analysis underpredicts the mag- 
nitude of the diffusivity ratio. Hence g correction factor 
was applied to Jenkins‘ results in the region 
In the region the diffusivity ratio was taken 
as unity since Deissler’‘ demonstrated that this assumption 
yields heat-transfer results in good agreement with experi- 
mental data for this Prandtl number. Deissler used eM in 
place of E ~ ,  and the cM used herein in the sublayers 
is substantially that of Deissler’s (see Fig. IV.B.3). 

The turbulent core diffusivity ratio used is 

y+ > 26. 
0 5 y+ 5 26 

= -k.216 In (0.0000865 >](2) (1V.B. 17) 
Jenkins EM 

The correction factor, together with the Page, et al. data 
from which it was derived, is plotted in Figure IV.B.6. 

109 



cv 
rl 

0 
0 
rl 

0 
Ln 

0 
cv 

0 
d 

Ln 

[u 

rl 
0 

rl 
. 

0 
fi 

0 

I I  

k 
01 

k 
0 
ICI 

k 
0 
4J 
U 
68 
Ik 

k 
0 u 

110 



Here again Jenkins’ expression was approximated by 
algebraic relations. 

Pr = 0.70 

range of application 

< - 1.5 EM In - 
V 

relation 

- -  EH - 0.70 
EM 

M E 

V 
- -  EH - 0.775 + 0.05 In - 
EM 

EM EM - -  EH - 0.975 + 0.0025(ln 7 - 4.0) 
M E 

4.0 5 In - < 10.0 
V 

M 
v -  

E 
In - > 10.0 

E 
- -  - 1.0 
EM 

5 ,  Solution of the four fundamental problems - general 
considerations 

Attempting to separate the variables of (IV.B.4), 
let 

- e(ji ,F) = X(Z)  - Y ( Y )  (1V.B. 18) 

Then 

- h2 (IV.B.19) -=iT x-- 
Hence the two following ordinary differential equations 
result. 

X ’  + 16A2X = 0 (IV. B. 2 0) 
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A solution of (IV.B.20) is 

-16h2G X = e  (1V.B. 22) 

As was its counterpart in the laminar case, (III.B.l6), 
(IV.B.21) is a differential equation of the Sturm-Liouville 
type. The weight function in this case is u. Thus, as 
in Section III.B, the problem solution can be represented 

- 

by 

where 

(1V.B. 23) 

(1V.B. 24) 

J 
-1 

And again, the boundary conditions on Y(7) are given by 
(III.B.23) through (III.B.26). 

6 ,  The fully developed temperature profiles 

The fully developed temperature profiles are needed to 
compute the eigenconstants, Cn. In addition, of course, 
they form the fundamental solutions themselves at distances 
far downstream from the thermal entry. It will be recalled 
that in the laminar case these profiles could be ascertained 
from physical reasoning as well as by direct solution of 
the appropriate governing energy equation; unfortunately, 
for turbulent flow such is not the situation (with the 
exception of case three). Here the equations must be 
solved. In this section the pertinent equations will be 
set forth and their solutions presented. 
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a. Case one 

Here the temperature profile is fully developed when 
all the energy transferred into the channel, at the upper 
wall is transferred out at the lower. Thus there is no 
change in temperature with x, and (IV.B.2) becomes 

- 

And the accompanying 

‘M ‘H 

‘M 

boundary conditions are 

(IV. B. 25) 

This equation has been solved numerically for several 
values of Re and Pr, and the required results are 
sented in Figure IV.B.7 and Table PV.B.l. The method 

pre- 
of ’ 

computation is the same as that discussed in Section 1V.G. 

b. Case two 
ae - 2; 
ax As shown in Section III.B.3.b, for this case -=- 

hence (IV. B. 2) becomes 

The boundary conditions are 

(1V.B. 26) 
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Solut ion of (IV.B.26) provides t h e  shape of t h e  f u l l y  devel-  
oped temperature p r o f i l e ,  b u t  t h e  magnitude of Qfd (2) con- 
t i n u a l l y  increases  with x. I n  fact  

- 

f r o m  ( I I I .B.31) .  Thus t h e  magnitude of t h e  so lu t ion  t o  
(HV.B.26) is  chosen such t h a t  when in t eg ra t ed  over t h e  
channel as i n  ( I I . C . 1 )  t h e  r e s u l t  is i d e n t i c a l l y  zero. 
This shape p r o f i l e  is c a l l e d  S ( F ) .  And 

Resul ts  of numerical computation of S ( y )  can be found i n  
Figure I V . B . 8  and Table I V . B . l .  

c .  C a s e  t h r e e  

This case requ i r e s  no so lu t ion  of an equation; r a t h e r  
t h e  f u l l y  developed temperature p r o f i l e  i s  evident  from 

physical  reasoning alone,  as  it was  f o r  i t s  
p a r t .  Referr ing t o  Sect ion III .B.3.c it is  

91:) = 1 

d. C a s e  four  

The equation governing t h e  temperature 

is t h e  s a m e  as t h a t  i n  case one, namely 

The boundary condi t ions are 

laminar counter- 
seen t h a t  

(1V.B. 2 8 )  

p r o f i l e  he re  

(1V.B. 2 9 )  
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A g a i n ,  the required cons tan ts  for  selected values  of R e  

and P r  are presented i n  F igure  I V . B . 9  and Table I V . B . l .  
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I V .  C. The Four Fundamental Solu t ions  

The temperature prof i les  for  the f o u r  f u n d a m e n t a l  

cwes i n  t u r b u l e n t  f l o w  are given by 

co -16AEg 
e = efd + CnYne 

n=o 
( I V . C . 1 )  

T h i s  i s  obtained f r o m  ( I V . B . 3 )  and ( I V . B . 2 3 ) ,  and i s  the 

t u r b u l e n t  counterpart  of ( I I I . C . 1 ) .  I n  t h i s  sect ion this  
equation w i l l  be applied t o  each of the f o u r  fundamental 
cases. 

1. C a s e  one 

H e r e  the temperature prof i le  is 

( I V .  c . 2  ) 

n = o  

B y  d e f i n i t i o n ,  a t  the  w a l l s  

D i f f e r e n t i a t i n g  ( I V . C . 2 )  and employing the d e f i n i t i o n  

( I 1  .B. 10) 

n=o 
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and 

From energy balance cons idera t ions  

( I V , C  . 5 )  

Performing t h e  ind ica ted  i n t e g r a t i o n  y i e l d s  

- -16AgZ 
B u t  as x -+ 00,  e + 0,  and a lso,  from t h e  symmetry 

8 " )  0") (1) And 'z fd of t h e  f u l l y  developed p r o f i l e ,  

e ( 1 )  +L Hence m 2 '  ("(1) = 1 by d e f i n i t i o n ,  'fd s i n c e  

co 

(1V.C. 7 )  2 2 
n=o 

Combining (IV.C.6) and ( I V . C . 7 )  y i e l d s  

The fundamental s o l u t i o n s  of t h e  f i r s t  kind are summarized 
b e l o w .  

1 2 1  



The last three fundamental solutions are presented in 
Figure IV.C.1 and Tables IV.C.1, 2, and 3 for Pr = 0.70. 

2. Case two 

Combining (IV.B.27) and (IV.C.l), the case two ternpera- 
ture profile is 

(1V.C. 9) 

At the walls this becomes 

And by definition 
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And from energy balance considerations 

The fundamental solutions of the second kind are summarized 
below. 

The first two of these fundamental solutions are presented 
in Figure IV.C.2 and Tables IV.C.1, 2, and 3 fo r  Pr = 0 .70 .  

3 .  Case three 

Combining (IV.B.28) and (IV.C.l), the case three tem- 
perature profile is seen to be 

At the upper wall, by definition 

(IV, C .13 
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and at the lower wall 

Differentiating (IV.C.13) and employing the definition 
(I1 .B. 1 2 )  

By definition 

Now, from energy balance considerations 

(1V.C. 16) 
0 

Combining (IV.C.15) and (IV,C.16), and integrating 

-16h:x 
But as x + w ,  e --+ 0, and d3) -+ 1. Hence 

1 1 = -  
2 

CO 

Combining the preceding two equations yields 

(IV.C.18) 

1 2 4  



The fundamental solutions of the third kind are summarized 
below. 

n=o 

- 
The three funbamental solutions that are functions of x 
are presented in Figure IV.C.3 and Tables IV.C.l, 2, and 3 

for Pr = 0 .70 .  

4. Case four 

The case four temperature profile follows from 
(IV.C.1) I 

(1v.c. 20) 
n=o 

At the upper wall this becomes 

and at the lower wall, by definition 
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Also by definition, at the upper wall 

Differentiating (1V.C. 20) 

From energy balance considerations 

(IV. C .23 ) 
0 

So from the preceding equations 

m 2 

Hence 

(IV. C - 2 5  ) 

and 
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Actually, (IV.C.26) has little computational advantage 
here over (IV.C.24). 

The fundamental solutions of the fourth kind are sum- 
marized below. 

n=o 

n=o 

- The three fundamental solutions that are functions of x 
are presented in Figure IV.C.4 and Tables IV.C.l, 2, and 3 
for Pr = 0 .70 .  

As discussed in Section IV.G.l, the fundamental solu- - tions are not presented for small values of x because 
numerical calculations were not performed for n > 2, and 
the first three terms are insufficient for adequate con- 
vergence of the series in the small x range. The 
values at which the small x solutions become valid are 
calculated in Appendix E to aid the reader in estimating 
the mid-range fundamental solutions. 

- 
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TABLE IV.C.l 
THE TURBULENT FUNDAMENTAL SOLUTIONS 

FOR P r  = 0.70, R e  = 20,000 

F i r s t  K i n d  

- 
X 

6. O X ~ O - ~  

8. 0X10-4 

1. O X ~ O - "  

2. O X ~ O - "  

4. Oxlo-" 
6.0X10-3 

1. oxlo-2 
2 .ox10-2 
4. ox10-2 
6. OX10-2 

W 

- 
X 

6. O X l O W 4  

8. OX10-4  

1. O X ~ O - "  

2. O X ~ O - ~  

4. O X ~ O - "  

1.oXlo-" 
2.  oxlo-" 
4. oxlo-2 

6.0X10-" 

6. O X ~ O - ~  

W 

(1) 
'ii 

53.1 

50.3 

48.1 

40.9 

33.2 

28.8 

24.5 

22.1 

21.9 

21.9 

21.9 

(1) 
'oi 

-0.112 

-0.292 

-0.644 

-3.92 

-10.8 

-15.1 

-19.4 

-21.7 

-21.9 

-21.9 

-21.9 

Second Kind 

0.0180 

0.0183 

0.0185 

0 * 0191 

0.0193 

0.0194 

0.0194 

0.0194 

0.0194 

0.0194 

0.0194 

-0.00220 

-0.00241 

-0.00259 

-0.00315 

-0.00344 

-0.00348 

-0.00348 

-0.00348 

-0.00348 

-0.00348 

-0.00348 

e (1) 
m i  

0.0775 

0.0981 

0.118 

0.202 

0.318 

0.389 

0.459 

0.497 

0.500 

0.500 

0.500 

e (2)  
m i  

0.00120 

0.00160 

0.00200 

0.00400 

0.00800 

0.0120 

0.0200 

0.0400 

0.0800 

0.120 

W 

I 
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TABLE 1V.C.  1 ( C o n t i n u e d )  

- 
X 

6. OX10p4 
8.0X10-4 
1.0~10-~ 
2 .) O X ~ O - ~  
4. O X ~ O - ~  
6. Oxlo-" 
1. ox10-2 
2 I ox10-2 
4. ox10-2 
6. OX10-2 

W 

- 
X 

6. OX10-4 
8.OXl 0-4 

1 .ox~o-' 
2 .oxlo-" 
4. OX~O-" 

1 * OX1 o-2 
2. oxlo-" 
4.0xl o-2 

6. OX10-3 

6. OX10-2 
W 

Third K i n d  

53.2 
50.4 
48.2 
41.0 
32.8 
26.8 
17.9 
6.59 
0.888 
0.120 

0 

c 

0.002 
0.0072 
0.0725 
0.223 
0.363 
0.573 
0.843 
0.979 
0.997 
1.00 

Fourth K i n d  

8 ( 4 )  
ii 

0.0179 
0.0188 
0.0196 
0.0226 
0.0269 
0.0303 
0.0352 
0.0416 
0.0448 
0.0452 
0.0453 

( 4 )  
'Oi 

-0.0092 
-0.0116 
-0.0164 
-0.0732 
-0.229 
-0.368 
-0.576 
-0.844 
-0.979 
-0.997 
-1 .) 00 

0 (3) 
mi 

0.0715 
0.0925 
0.112 
0.201 
0.347 
0.466 
0.642 
0.868 
0.982 
0.998 
1.00 

8 (4) 
m i  

0.00113 
0.00152 
0.00192 
0.00384 
0.00723 
0.0100 
0.0142 
0.0195 
0.0222 
0.0226 
0.0227 
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TABLE IV.C.2 

THE TURBULENT FUNDAMENTAL SOLUTIONS 
FOR P r  = 0.70, R e  = 30,000 

- 
X 

6. OX10-4 

8.0X10-4 

1. O X ~ O - ~  

2 .  oxlo-= 
4. O X ~ O - "  

1. ox10-2 

2. ox10-2 

4 . 0 x l  o-2 

6 . 0 ~ 1 0 - ~  

6. OX10-2 

00 

- 
X 

6. OX10-4 

8. OX10-4 

1.0x10-3 

2. O X ~ O - "  

4.0X10-3 

6. OXlO-" 

1. ox10-2 

2. ox10-2 

4. ox10-2 

6.0Xl 0-2 

CO 

(11 
'ii 

65.6 

61.9 

58.9 

49.2 

39.1 

33.9 

29.8 

28.2 

28.2 

28.2 

28.2 

F i r s t  K i n d  

(1) 
@oi 

-0.30 

-0.868 

-1.74 

-7.76 

-17.3 

-22.5 

-26.6 

-28.1 

-28.2 

-28.2 

-28.2 

Second Kind 

0.0138 -0.00162 

0.0141 -0.00186 

0.0143 -0.00205 

0.0148 -0.00255 

0.0150 -0.00273 

0.0150 -0 002 75 

0.0150 -0.00275 

0.0150 -0.00275 

0.0150 -0.00275 

0.0150 -0.00275 

0.0150 -0.00275 

8 (1) 
m i  

0.0954 

0.121 

0.144 

0.242 

0.364 

0.429 

0.480 

0,499 

0.500 

0.500 

0.500 

e (2) 
m i  

0.00120 

0.00160 

0.00200 

0 00400 

0.00800 

0.0120 

0.0200 

0.0400 

0.0800 

0.120 

CO 



TABLE IV.C.2 (Continued) 

- 
X 

6. OX10-4 
8. OX10-4 
1. O X ~ O - ~  
2. O X ~ O - ~  
4. O X ~ O - ~  

6. 0X10-3 
1. ox10-2 
2. ox10-2 
4. ox10-2 
6.0Xl 0-2 

co 

- 
X 

6. OX10-4 
8. OX10-4 
1. oxlo-" 
2 .oxlo-" 
4 .) Oxlo-" 
6. OXlO-" 
1. ox10-2 
2. ox10-2 
4.0xl o-2 
6.0X1 0-2 

co 

66.0 
62.0 
59.0 
49.3 
37.6 
29.0 
17.3 
4.76 
0.361 
0.0272 

0 

- 
0.0082 
0.019 
0.109 
0.305 
0.463 
0.680 
0.912 
0.993 
1.00 
1-00 

Fourth Kind 

8 ( 4 )  
ii 

0.0144 
0.0152 
0.0159 
0.0186 
0.0224 
0.0253 
0.0293 
0.0336 
0.0351 
0.0352 
0.0352 

( 4 )  
@oi 

-0.01 
-0.016 
-0.0264 
-0.115 
-0.310 
-0.467 
-0.682 
-0.912 
-0.993 
-1.00 
-1.00 

0 (3) 
m i  

0.089 
0.115 
0.139 
0.246 
0.418 
0.551 
0.732 
0.926 
0.994 
1.00 
1.00 

8 ( 4 )  
m i  

0.00112 
0.00152 
0. do190 
0.00377 
0.00691 
0.00934 
0.0127 
0.0162 
0.0175 
0.0176 
0.0176 
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TABLE I V . C . 3  

THE TURBULENT FUNDAMENTAL SOLUTIONS 
FOR P r  = 0.70, R e  = 50,000 

- 
X 

6.OXl Ow4 

8. OX10-4 
1. oxlo-" 
2.0~10-" 
4. Oxlo-" 
6. OX10-3 
1. ox10-2 
2. ox10-2 
4 0x1 o-2 
6. O X ~ O - ~  

co 

- 
X 

6. O X ~ O - ~  
8.0X10-* 
1 oxlo-" 
2. O X ~ O - ~  
4.0~1 O-" 

6. OX10-3 
1. oxlo-2 
2. ox10-2 
4. ox10-2 
6. OX10-2 

03 

(1) 
'ii 

86.6 
81.0 
76.5 
62.3 
48.7 
43.3 
40.2 
39.6 
39.6 
39.6 
39.6 

F i r s t  K i n d  

(1) 
'oi 

-1.32 
-3.20 
-5 -53 
-17.2 
-30.6 
-36.0 
-39.1 
-39.6 
-39.6 
-39.6 
-39.6 

Second K i n d  

0.00976 
0 * 0100 
0.0102 
0.0106 
0.0107 
0.0107 
0.0107 
0.0107 
0.0107 
0.0107 
0.0107 

-0.00112 
-0.00137 
-0.00155 
-0.00191 
-0.00199 
-0.00199 
-0.00199 
-0.00199 
-0.00199 
-0.00199 
-0.00199 

8 (1) 
m i  

0.125 
0.158 
0.188 
0.302 
0.420 
0.468 
0.495 
0.500 
0.500 
0.500 
0.500 

e ( 2 )  
m i  

0.00120 
0.00160 
0.00200 
0.00400 
0.00800 
0.0120 
0.0200 
0.0400 
0.0800 
0.120 

03 
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TABLE 1V.C. 3 ( C o n t i n u e d )  

Third Kind 

- 
X 

, 

6. O X ~ O - ~  
8. O X ~ O - ~  

I..ox~o-~ 
2. ox10-3 
4. Oxlo-' 
6.0x10-" 
1. oxlo-' 
2. oxlo-' 
4. oxlo-' 
6.0Xl 0-2 

03 

- 
X 

6. O X ~ O - ~  
8. 0X10-4 
1. O X ~ O - ~  
2. O X ~ O - ~  
4. O X ~ O - ~  

1. ox10-2 
2. ox10-2 
4. oxlo-' 

6. Oxlo-' 

6. OX10-2 
03 

(3) 
'ii 

86.8 
81.2 
76.8 
61.9 
42.8 
29.7 
14.4 
2.32 
0.0608 
0.00160 

0 

g (3) 
o i  

0.0094 
0.0265 
0.0495 
0.191 
0.436 
0.608 
0.811 
0.969 
0.999 
1.00 
1.00 

Fourth K i n d  

e ( 4 )  
ii 

0 0109 
0 0116 
0.0122 
0.0144 
0.0177 
0.0200 
0.0226 
0.0247 
0.0251 

' (4) 
o i  

-0.016 
-0.0328 
-0.0552 
-0.195 
-0.439 
-0.610 
-0.812 
-0.970 
-0.999 

0.0251 -1.00 
0.0251 -1.00 

g (3) 
m i  

0.121 
0.155 
0.186 
0.323 
0.530 
0.674 
0.842 
0.974 
0.999 
1.00 
1.00 

g ( 4 )  
m i  

0.00116 
0.00156 
0.00194 
0.00369 
0.00639 
0.00827 
0.0105 
0.0122 
0.0125 
0.0126 
0.0126 
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IV. D. The Nusselt Number Relations 

As with the laminar case, several of the general 
Nusselt number relations presented in Section 1.E have been 
combined with the appropriate fundamental solutions. The 
results are presented in Table IV.D.l. 

IV. E. Relations Valid at Small % 

At very small values of x the temperature profile 
reaching out from the heated wall has not yet penetrated 
beyond the laminar sublayer. Hence the region of interest 
is purely laminar, as it was, of course, in Section II.E., 
and the development in that section is applicable here 
with only minor modification. 

1. The differential equation 

Recall from (IV.B.1) that the energy equation for the 
entire region between the two planes is 

- 
where u 4 . U m 

(1V.E. 1) 

(1V.E. 2) 

Now in the region of interest here, the laminar sub- 
EH layer very close to a wall, - Pr << 1. So the energy 

equation for this region reduces to 
V 

(1V.E. 3 )  

This is precisely the equation (III.E.1) used in the laminar 
section. But there is an important different here; u no 
longer assumes the parabolic laminar form. Rather, as can 
be seen from (IV.B.15) when - (( 1 and q2 << 7 ,  

- 

“M 
V 
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TABLE I V . D . l  

TURBULENT NUSSELT NUMBERS FOR UNIFORM AND 
EQUAL WALL BOUNDARY CONDITIONS, P r  = 0.70 

E q u a l  W a l l  Temperatures 

- 
X 

N u s  s e 1 t N u m b e r  

R e  = 20,000 R e  = 30,000 R e  = 50,000 

6. OX10-4  62.7 

8.OXl 0-4 62.2 

80.7 

80.4 

114 

114 

1.0~10-~ 62.1 80.3 114 

2. O X ~ O - ~  62.0 80.3 114 

to 62.0 80.3 114 

E q u a l  W a l l  H e a t  Fluxes 

- 
X 

R e  = 20,000 

6. OX10-4  63.5 

8. OX10-4  63.1 

1. O X ~ O - ”  63.0 

2, O X ~ O - ~  62.9 

CO 62.9 

N u s  s e 1 t N u m b e r  

R e  = 30,000 R e  = 50,000 

82.0 116 

81.6 115 

81.5 115 

81.4 115 

81.4 115 
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- - R e f  u - -  8 7  

a t  t h e  lower w a l l .  A t  the upper w a l l  t h i s  becomes 

- - R e f -  
8 7  u -- n (fi = 1 - y )  (IV. E .4) 

+ This  r e l a t i o n  i s  the familiar u = y+ equation i n  a form 

m o r e  convenient f o r  t h e  purpose a t  hand. Thus t h e  energy 
equation becomes 

(1V.E. 5) 

for  t h e  region under considerat ion.  It is i d e n t i c a l  i n  

form t o  (III.E.7) of the laminar s e c t i o n ,  d i f f e r i n g  only 
i n  the magnitude of t h e  constant  c o e f f i c i e n t ;  hence t h e  
s a m e  s i m i l a r i t y  s o l u t i o n  approach is  appl icable .  

2 .  The uniform w a l l  temperature case 

H e r e  the  w a l l  boundary condi t ion is  

e- = 1  
'1=0 

The s i m i l a r i t y  s o l u t i o n  sought is  of the  f o r m  

w h e r e  

(IV. E. 6) 

(IV.E.7) 

1 
- 3  
- -  

e = ; x  (1V.E. 8) 

Combining (IV.E.5), (IV.E.7), and (IV.E.8) y i e l d s  t h e  ord i -  
nary d i f f e r e n t i a l  equation 

(IV. E. 9) 
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The solution of this equation is 

Re f 

+ = e = c  1 [e-im d & , + C  2 
(IV.E.lO) 

where C and C2 are constants. From the boundary con- 
dition (IV.E.G), and from (IV.E.8) one obtains 

1 

= 1  (1V.E. 11) 
4-0 

e 

Hence, from (IV.E.10) 

The integral in this equation vanishes, as can be seen by 
expanding the exponential in a series and integrating term 
by term. Thus 

c = 1  (1V.E 12) 
2 

Since 6 = o at X = o ( 4  = m )  by definition, 
(IV.E.lO) becomes 

Since the integral vanishes at e = 0, this can be written 
as 

Re f - -  
de + 1 

1 
0 

From Jahnke-Emde27 

(IV. E. 13) 

1 

1152 de = ( ~ 7  1152 f I?(+) (IV. E. 14) 
0 
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Combining the preceding two equations yields 

Thus (IV.E.lO) becomes 

e = -  (IV. E. 15) 
0 

where rs is a dummy variable. 
The fundamental solutions sought are Boo and Om. 

Considering first Qo0, (II.B.10) yields 

Combining this with (IV.E.8) and (IV.E.15) gives 

Hence 

i - -  
@oo 1152 

(IV. E. 16) 

(IV.E.17) 

(1V.E. 18) 

This fundamental solution holds for both cases one and 
three in the region near x = 0 and a unity temperature 

- 
wall. 

8 is now found by performing the integration indi- m 
cated in both (IV.C.5) and (IV.C.16). 

- 
e m = 2 J a o o G  

0 

(1V.E. 19) 
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So i n  t h i s  case 

Thus 

2 3. - 
R e  f e m = 13.44 (&I x3 

(1V.E. 20) 

[ IV. E. 2 1) 

This fundamental s o l u t i o n ,  l i k e  t h e  one preceding, holds 
f o r  both cases one and three. 

3. The uniform wall  h e a t  f l u x  case 

In t h i s  case t h e  w a l l  boundary condi t ion  i s  

0- = 1  7=0 (1V.E. 22) 

From (II.B.15) it i s  seen  tha t  t h i s  i s  equivalent  t o  

(IV. E. 23) - 1 - - -  (:)- 4 
7'0 

H e r e  the  s i m i l a r i t y  s o l u t i o n  i s  of t h e  form 

w h e r e  

1 
3 

- -  
c = i j i i  

(IV. E. 24) 

(IV.E.25) 

Combining the above t w o  equat ions with (IV.E.5) y i e l d s  the 

following ordinary d i f f e r e n t i a l  equation 

(1V.E. 26) 
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The s o l u t i o n  of t h i s  equation is  

R e  f 3 
1152 

d 4 + C 4  
2 

$ = c14 ( I V .  E. 2 7 )  

w h e r e  C and C are cons tan ts .  In t eg ra t ing  by p a r t s ,  
t h e  above becomes 

1 2 

R e  f 
4 3  - -  - -  Re 

4” R e  f de ( I V . E . 2 8 )  @ = c 2 4 - c  e 1152 
1 

Introducing (1V.E. 24) y i e l d s  

( I V .  E .  29) 

Applying t h e  boundary condi t ion  (IV.E.23), and employing 
( I V .  E .  25) 

( I V .  E .  30) 

I n  a r r iv ing  a t  t h i s  condi t ion ,  use i s  made of t h e  fact  t h a t  
t h e  i n t e g r a l  i n  (IV.E.29) vanishes a t  e = 0,  as  can be 

seen by expanding t h e  exponential  i n  a series and i n t e g r a t i n g  

t e r m  by t e r m .  
By d e f i n i t i o n  8 = 0 a t  = 0 ( 4  = a), so (IV.E.29) 

becomes 
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so 

(1V.E. 31) 

From J a h n k e - E m d e  

2 R e  f 4 3  - --  
1 1 5 2  ( I V .  E .  3 2 )  1 1 5 2  

0 

H e n c e  

1 c = -  
1 - 1 

A n d  ( I V . E . 2 9 )  becomes 

( I V .  E .  33)  

(1V.E.  34) 

where a i s  a dummy variable. 
Since em occurs a t  ij = 0 ( 4  = 0 )  the fundamental 

s o l u t i o n  is  

( I V .  E .  3 5 )  

E v a l u a t i n g  the cons t an t  yields  
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1 - 
3 1  

-3 e = 0.1846 
00 (IV.E.36) 

8 for this case follows directly from energy balance 
considerations (see (IV.C.12)). 
m 

e = 2z m (IV. E. 3 7 )  

These fundamental solutions hold for both cases two - 
and four in the region near x = 0 and a unity Ch heat- 
flux wall. 

The limiting fundamental solutions derived in this 
section are indicated by the dashed lines on the fundamental 
solution curves in Section 1V.G. 

4. The Nusselt number relations 

The Nusselt number relations for very small values of - x follow from the preceding developments of this section 
and the results of Section 1I.E. 

a. Case one 
- 

At very small x the temperature profile has not 
propagated to the opposite wall, so Q ( ’ )  = 0. Hence 
( I I . E. 5 ) becomes oi 

(IV. E. 38) 

Introducing (IV.E.17) and (IV.E.20) there follows 

1 - I -  
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so 

(IV. E. 40) - 1 - 
1 - -  
3 L  - t  

N'O 

0.2232 x -3 - 3 11 + (\: - t e ~ ]  2 
L. e 

For most w a l l  temperature r a t i o s ,  t he  second term i n  the 

denominator i s  neg l ig ib l e  compared t o  t h e  f irst .  

b.  Case two 
- 

Here e ( 2 )  = o a t  very small x, so (II.E.~) o i  
becomes 

Combining t h i s  w i t h  (IV.E.35) and (IV.E.37) y i e l d s  

N'O 

(IV. E. 41) 

(1V.E. 42) 

O r  

(1V.E .43 ) - 1 - 
1 

1 3 -  
-3 

N'o - 
0.1846 (My x - 2 

Again, the second t e r m  i n  the denominator is normally 

neg l ig ib l e .  

c .  Case three 

I n  t h i s  case @::' = 0,  and (II.E.9) becomes 
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( IV. E. 44) 

Introducing (IV.E.17), (IV.E.20), and (IV.E.37) yields 

Or 

1 
1 

- 3  

- - -  
4.479 ( g y  x 

Nuo - - (IV. E .46) 
1 

2 - - 
1 - 13.44 (us 1152 x3 - 2 c2i-%) % 

d. Case four 
- 

Here e ( 3 )  oi = o at very small x, so (II.E.~~) 
becomes 

(1V.E .47) 

Combining this with (IV.E.35), (IV.E.37), and (IV.E.2Q) 
gives 
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Thus 

- 1 Nuo - 
1 1 2 

1 - -  0.1846 (u) 3 -  x3 - 2 2  - 13.44 (=ye -Di3 ? 
1152 1152 - GO 

(1V.E. 49) 
- 

IV. F. Relations Valid at Large x 

As was the case for the laminar flow counterparts, at - 
large values of x the infinite series in the turbulent 
fundamental solution expressions vanish. The term remaining 
in these expressions is the fully developed solution; it is 
the subject of treatment in the present section. 

1. The fully developed fundamental solutions 

These expressions are obtained in each case by setting 
the infinite series in the corresponding fundamental solu- 
tion in Section 1V.C equal to zero. 

a. Case one 
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d. Case four 

The preceding fundamental solutions for which no numer- 
ical values have been assigned are functions of Reynolds 
number and Prandtl number. They were evaluated numerically 
by the method discussed in Section IV.G, and are presented 
in Figures IV.B.7, 8, and 9 and Table IV.B.l. 

2. The fully developed Nusselt number relations 

The fully developed Nusselt number relations for tur- 
bulent flow follow from the preceding results and those of 
Section 1I.E. As in the laminar case, the fully developed 
Nusselt number relations are valid at smaller values of x 
than are 'the fully developed fundamental solutions. 

- 

a. Case one 

Here one obtains 

=1 (1V.F. 1) - Nuo - 

wo 
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Thus 

Therefore, when twi # two' 

(IV. F. 2) 

(IV. F. 3 )  

This Nusselt number is plotted against Reynolds number for 
a Prandtl number of 0.70 in Figure IV.F.l. 

(IV.F.2) is indeterminate and the two When twi = 

Nusselt number must be evaluated by a limiting process, as 
was carried out for the corresponding laminar case. Com- 
bining the appropriate Nusselt number expression of Section 
1I.E with the appropriate general fundamental solutions of 
Section IV.C, one obtains 

- 
As x becomes large this expression approaches 

Thus 

Nuo = 4 

_I NU, - 4 A z  when twi - - two 
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A p lo t  of t h i s  Nusse l t  number is given i n  Figure IV.F.l. 

b. C a s e  t w o  

Combining (II .E.7)  with t h e  appropriate f u l l y  developed 
fundamental s o l u t i o n s  i n  Sec t ion  IV.F.l y i e l d s  

- 1 - 
N'O 2% + S(1) + [2x  + S(-l ) ]  (-): Gi ax (1 + -) %i GO %O 

(IV.F, 5 )  

Thus 

- 1 Nuo - 
S(1) + S ( - 1 )  (2) (IV.F.6) 

This f u l l y  developed Nussel t  number i s  p l o t t e d  versus  
Reynolds nuniber f o r  equal  w a l l  h e a t  f luxes  i n  Figure IV.F.l. 

c. C a s e  three 

For t h i s  case 

N'O 
( I V .  F .7 ) 

Hence, when - Nuo - 1 

mf d 
@ ( 4 )  

(IV.F.8) 

When qi = 0 (IV.F.lO) i s  indeterminate  and the e n t r y  
length  expressions must be employed. From (II .E.9) and the 

fundamental s o l u t i o n  expressions of Sec t ion  1V.C 
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(IV. F. 9) 

for the case of Gi = 0. A s  2 becomes large t h i s  expres- 

sion approaches 

- 4 c 0 y p  

1 co 
7j -  2 Y p  

ho 

Nuo - 

Hence, when Gi = 0 ,  Nuo = 8 hz  (IV. F. 10) 

d,  Case four 

Here one obtains 

- 1 Hence, when Go f 0, Nuo - e:;) (1) - 6 (4) 
mf d 

A n d  when xo = 0,  Nuo = 0 

(IV.F.12) 

(IV. F 13) 
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IV. G. Solution of the Sturm-Liouville Equation 

1. General considerations 

Recall from Section IV.B.5 that the Sturm-Liouville 
equation resulting from the separation of variables in the 
energy equation is 

(IV.G.1) 

For the calculation of the fundamental solutions it is nec- 
essary to solve this equation along with the appropriate 
boundary conditions to obtain An, Y n W  , YA(-l) , Y n W  , 
Y,1( l )  , and C 
laminar study, the equation is attacked in two different 
manners, depending on the value of the index n. 

for the four fundamental cases. As in the n 

For the lower values of n the equation is solved 
numerically, and the eigenfunctions are determined through- 
out the interval between the planes. For the higher n 
range the W K B J  asymptotic solution is again employed, and 
only the values at the walls are obtained; but of course, 
these are sufficient for the calculation of the fundamental 
solutions. 

Unfortunately, it was found that the asymptotic solu- 
tions are not valid at the very low values of n as they 
were for the laminar case. It appears as though the numeri- 
cal solution must be employed for n less than about ten. 
Thus, since the present study was limited to calculations 
for n 2 for most cases, it was not possible to use the 
asymptotic solution results in the calculation of the 
fundamental solutions, and the series converged satisfac- - torily only for relatively large values of x, as evi- 
denced by Figures IV.C.1, 2, 3 ,  and 4. 
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2. Solution at the lower eigenvalues 

Here again, the iterative procedure based on the method 
of Berry and de Prima is employed. The eigenvalue correc- 
tion is carried out precisely as described in Section 
III.G.2, except that in this case the weight function 
appearing in the Sturm-Liouville equation and the normaliza- 
tion expression is the turbulent velocity profile repre- 
sented by U ( y )  . The fact that it is not available as an 
analytic expression is immaterial in the numerical computa- 
tions. 

Because the widely differing flow characteristics in 
various regions of the interval make attractive a numerical 
integration scheme employing variable step-widths (as dis- 
cussed in Appendix c) , Simpson's rule is not used in the 
normalization factor and eigenconstant calculations. 
Rather, the same predictor - corrector scheme used in the 
eigenfunction calculations is employed. 

The computations were performed on a Burroughs 220 
Electronic Digital Computer at the Stanford University 
Computation Center. Further details of the computational 
procedure are given in Appendix C. 

The eigenvalues and pertinent combination of constants 
are presented in Table IV.G.l. 

3 .  Solution at the higher eigenvalues 

As with the laminar case, the W K B J  approximation may 
fruitfully be applied to determine asymptotic expressions 
for the higher eigenvalues and eigenconstants. The devel- 
opment proceeds along the same lines as that in Section 
III.G.3. 

From (IV.B.21) the differential equation of interest 
here is 
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E: 
w h e r e  h 4 1 + - 'M - H P r  ' 'M 

Now l e t t i n g  Yn = e  g ( Y )  

one obtains f r o m  ( I V . G . 2 )  

hg" + h g t 2  + h ' g '  + AEG = 0 

Seeking a s o l u t i o n  of the f o r m  

g = Ango + g1 + hi1g2 + - - -  

( I V . G . 2 )  

(1V.G. 3 )  

( IV .G.4 )  

(1V.G.  5 )  

( I V . G . 6 )  

t h i s  expression is combined w i t h  i t s  predecessor, and coef- 

'n f i c i e n t s  of l i k e  powers of are equated, y i e ld ing  

and 

- -  - In 
gl 

Proceeding as i n  Sec t ion  I11 

( I V .  G. 7 )  

(m) ( IV .G.8 )  

G . 3 ,  there f o l l o w s  
- 

J 
0 

(IV.G. 9) + H e  0 
- G e  - 

1 

h2 (iy 1 
'n - 

C h a n g i n g  t h i s  WKBJ approximation t o  a more convenient  f o r m  
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( I V .  G . L O )  

Since these  expressions are going t o  be used near the  

w a l l s  of the channel,  it is advantageous a t  t h i s  t i m e  t o  
e x p l o i t  the f a c t  t ha t  c e r t a i n  s i m p l i f i c a t i o n s  occur i n  t h e  
behavior of u and h i n  these laminar sublayer regions.  

- 
- 

Rewriting ( I V . B . 7 )  i n  t e r m s  of y' r a t h e r  than y ,  
it can be seen tha t  f o r  s m a l l  y' 

5 y - K )  y +4 

V 

Hence 

2 3 V =(-E) y+4z4 0 

U t i l i z i n g  ( I V . B . l O )  

( I V . G . 1 1 )  

(1V.G .12 1 

(1V.G.  13)  

E 
Thus - approaches zero  near  the wal l s .  To  e s t a b l i s h  a 

f e e l i n g  for the manner i n  which it does so, note  the curve 
i n  Figure IV.B.3. Now s i n c e  - EH and P r  are of the order  

of u n i t y  or less, it follows tha t  h 
the w a l l s .  

V 

EM 
approaches un i ty  a t  

- 
Direc t ing  a t t e n t i o n  now t o  u,  it can be seen from 

(IV.B.15) t h a t  i n  the w a l l  region where EM << 1 and 

z2 << 
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e f  , depending on the wall) (IV.G.14) (or 8 
- - Re fz u -  8 

a. The inner wall 

Near the inner wall y-+ -1. As in the laminar case - 
the substitution y = -1 + z is made. The differential 
equation, (IV.G.2), thus becomes 

22- (hYA) + AnuYn 2 -  = 0 dz 

which, in the light of the preceding development, reduces 
near the walls to 

= o  2 Re f 
zyn Y" + An -g-- n 

Letting 

(1V.G. 15) 

this becomes 

Y; + An6 2 2  zYn = 0 (IV.G.16) 

where Yn = Yn(z). 
having the solution 

This is a form of Bessel's equation 

1 - 1 - 
(IV. G .17 ) Yn = G 1 -  z J 1 - 6h,Z ')+ H Z 2 J  1 - -  1 

3 3 

this has the asymptotic form An For large 

(1V.G. 18) 
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. Returning now to the WKJ3J form (IV.G.10), note that 

2 1  - 
= - y +  6z" dz 

0 

where 

(IV. G .19) 

Thus 

Note that y must be evaluated numerically for each partic- 
ular value of Reynolds and Prandtl numbers. The results of 
such an evaluation are to be found in Table IV.G.2. 

The equation (IV.G.lO) then becomes near the inner 
wall 

1 (1V.G. 2 0 )  

a - 
2 2  

- 0  G COS [h, =j- 6 z  - (Any + @) - 
yn 11 

h2Z4 

In order to patch the two expressions (IV.G.18) and (IV.G.20), 
it is apparent that 

GO = qz (1V.G. 2 1 )  

and 
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:T + H cos - n - (IV.G.22) G COS - 12 1 1 

7.r - s i n  ( y ~ ~  + $) 5n 12 + H1 s i n  - - G s i n  - 12 1 
(1V.G. 23) 

A s  i n  the laminar case, 
l a te r  from boundary condi t ion cons idera t ions .  

$, G I ,  and H w i l l  be determined 
1 

b. The ou te r  w a l l  
- 

N e a r  t h e  ou te r  w a l l  y +1. Making t h e  s u b s t i t u t i o n  

? = 1 - <, t h e  d i f f e r e n t i a l  equation becomes 

Y" + A262<Yn = 0 n n 

where Yn = Y ( c ) .  Again, t h i s  has the  s o l u t i o n  n 

And f o r  l a r g e  An 

(IV. G. 25) 

H e r e  the i n t e g r a l  appearing i n  (IV.G.lO) becomes 

162 



so 

cos 

- 
1 3 - 

An ?J 2 K 2  - (h,r - @) 

Then from the above and (IV.G.25) 

5T + H cos - - - cos 12 G COS - 
2 12 2 

7J G s i n  * +  H s i n  - = s i n  
2 12 2 12 

3w the four  sets of boundary condi-ions w i l l  be 

c. C a s e  one 

H e r e  t h e  boundary condi t ions are 

Y ( - 1 )  = 0 

Y ( 1 )  = 0 

Applying (IV.G.17) a t  t h e  inner  wal l  it i s  found 

(IV. G .26) 

(1V.G-27) 

(IV. G. 28) 

introduced. 

that  

H = 0 s i n c e  
1 

1 - 
z J  2 - -  1 ($ bhn%) 

3 

does not  approach zero w i t h  z .  Then from (IV.G.22) and 

( IV. G. 23 ) 

s i n  (y~, + @) - s i n  3 cos (yln + @) = o 5T 
12 12 cos - 

so 

s i n  ( y ~ "  + @ - =)= 12 0 (1V.G. 29) 
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This requires that 

n = 0, 1, 2, - I -  (1V.G. 30) 5n yhn -I- @ - 12 = t nr, 

Without losing generality, n is taken to be zero. Then 
from (IV.G.23) and (IV.G.30) 

G1 = 1 (IV.G.31) 

Thus, in the region near the inner wall 

(1V.G. 32) 

At the outer wall H = 0 for the same reason that 
2 

H = 0 at the inner. Thus 
1 

Combining this result with (IV.G.30) yields 

A n =(2n+$)-+ n = 0, 1, 2, - - -  (1V.G. 34) 

Also 

G = (-l)n (IV. G .35 ) 
2 

So near the outer wall 

(IV. G. 36) 

Now the expressions needed for the determination of 
the asymptotic eigenconstants must be derived. From 
(IV.G.32) 
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so 

(1V.G. 38) 

Noting f r o m  (IV.G.32) t h a t  a t  = -1, Yn  vanishes  f o r  
a l l  va lues  of A 

(2)- = o  
y=-1 

(1V.G. 39) 

S h i f t i n g  a t t e n t i o n  t o  t h e  o u t e r  w a l l ,  from (IV.G.36) 

(IV.G.40) 

So a t  t h e  ou te r  w a l l  

(1V.G .41) 

Note t h a t  a t  t h i s  wall Yn = 0 only for A = A n ,  so 

n 
ah n 

a Y  
must be computed f r o m  (IV.G.24). 
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aH 1 
2 
- aG 2 

+ 5 J , $ + e : J  
n - -  

3 n - 
3 

The first three terms vanish as 5 -+ 0. Then 

sin (yhn - - z) 12 H =  
2 sin (- $) 

(from (IV.G.27) and (IV.G.28)) 

so 

Inserting the above expressions into (A. 

11 
2 

n+ 1 
2Y 'n cn = (-1) 

Also 

since 

(IV.G.42) 

(1V.G .43) 

as 

2 1 - - -  n+ 1 -1 3 3 
= (-1) 0.63134 y 6 An (IV. G .44) 
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and 

2 s~ r($) - 1 
c Y’(1) = - 

n n  L r ( + >  
3=2y 

2 1 
3 

- - -  
= 0.63134 ~ - ’ 6 ~ h ,  (IV.G.45) 

d. C a s e  two 

H e r e  t h e  boundary condi t ions  are 

YA(-l) = 0 

D i f f e r e n t i a t i o n  of (IV.G.17) gives  

(IV. G .46) 

To s a t i s f y  t h e  inner  wall boundary condi t ion  

G = O  
1 

Then from (IV.G.22) and (IV.G.23) 

from which 

(1V.G .47) T cb = 12 - ?An rt n r ,  n = 0, 1, 2, - * -  
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Again n i s  set equal t o  zero.  It follows t h a t  

H = 1  
1 

So near t h e  inner  w a l l  

1 - 
Y n = z J  2 

1 
3 

- -  

(IV.G.48) 

(1V.G .49) 

A s i m i l a r  condi t ion  exists a t  t h e  ou te r  w a l l ,  r e s u l t i n g  

i n  

s i n  (yAn - - ")= 12 o 

Hence 

An = (2. + +)e , n = 0,  1, 2 ,  0 . -  (1V.G. 50) 

A s  before, t h i s  r e s u l t  leads t o  

n 
H = (-1) 
2 

So near t h e  ou te r  w a l l  

(IV. G .51) 

(IV. G .52 ) 

I n  order t o  determine t h e  expression for  the eigen- 

a( must be evaluated a t  both w a l l s .  ah cons tan t s ,  

D i f f e r e n t i a t i n g  (IV.G.49) y i e l d s  
ais 

(IV. G. 53) 
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A t  z = 0 both of t hese  t e r m s  vanish,  so 

Now s i n c e  

s i n  (x 1 2  - y ~ ,  + G) 
G =  

2 s i n  (- $) 
it follows t h a t  

(1V.G. 54) 

(1V.G. 55) 

Thus, a t  the ou te r  w a l l  

1 

( IV. G .56) 
5 

Now f r o m  (IV.G.49) and (IV.G.52) 

1 
1 - - -  

3 3  3 
Y n ( - l )  = 1 'n 

63 r (+) 
(IV. G. 57) 

(IV.G.58) 
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Thus employing (A. 10) y i e l d s  

5 
4 - - -  

n+i  3* 3 
cn = (-1) - r ( $ ) h n  1 

8yb 

Also 

5 
7 

n+i 36 - r($) - - j -  
c Y (-1) = (-1) 

n n  2 r(+) 
8y6 

2 5  - - - -  n+ 1 3 
= (-1) 0.29699 y-'b 3hn 

and 

- - - -  2 5 
3 3  

= - 0.29699 y-l6 An 

(IV.G.59) 

(IV. G .60) 

e. C a s e  t h r e e  

H e r e  the boundary cond i t ions  are 

Y ' ( - l )  = 0 

Y ( 1 )  = 0 

Proceeding as be fo re  it is found t h a t  a t  t h e  inne r  w a l l  

H = 1  
1 
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Thus 

1 
2 
- 

Y = z J  
1 
3 

- -  n (1V.G. 61) 

The condi t ions a t  t h e  outer  w a l l  lead t o  

(1V.G. 62) 7r hn = (212 + 1) - n = 0 ,  1, 2, - - *  
4Y ' 

For t h e  region near t h e  outer  wall  it is  found t h a t  

(1V.G. 63 ) 

by (IV.G.41), Y n ( - l )  by 
(IV.G.57), and by (IV.G.43); thus  from (A.11) 

t h e r e  r e s u l t s  

Also 

1 - 
n+i 3* - h-1 

2Y n 
e Y (-1) = (-1) n n  

n+ 1 
= (-1) 0.86603 y-'hn-' (IV.G.64) 

and 
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1 
b 

- -  2 - 
= 0.63134 63y-1hn 

f .  C a s e  fou r  

H e r e  t h e  boundary condi t ions are 

Y ( - 1 )  = 0 

Y ' ( 1 )  = 0 

A t  t h e  inner  w a l l  it is found tha t  

H = O  
1 

G = 1  
1 

Hence 

From t h e  condi t ions  a t  the o u t e r  w a l l  

s i n  (yhn - - 2) = o 1 2  

so 

n = 0,  1, 2, * * *  
77- 

= (2n + 1) - 9 
An 4 Y  

(1V.G. 65) 

(1V.G. 66) 

( I V .  G. 6 7 )  
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In the region near the outer wall there obtains 

1 
2 
- 

- -  n = (-lP r: 3 
(1V.G. 68) 

Now, YA(-l) is given by (IV.G.381, Yn(l) by 

(IV.G.58), and -$ (2)- by (IV.G.56); so (24.12) yields 
y=1 

8y6 

Also 

n+ 1 
= (-1) 0.21651 y - ’ A i l  (1V.G. 69) 

and 

_ - - -  2 5 
3 3  

= - 0.29699 y- l6 An (1V.G. 70) 

The numerical results of this section are presented in 
Table IV.G.l. The cautioning remark on page 90 in the 
laminar section regarding the normalization of the eigen- 
functions also applies to this section. 
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TABLE IV.G.2 
TURBULENT WKBJ PARAMETERS 

P r  R e  6 Y 

0.01 20,000 
0.01 30,000 
0.01 50,000 

0.70 20,000 
0.70 30,000 
0.70 50,000 

4.3246 0.98610 
4.9143 0.98294 
5.8529 0.97488 

4.3246 0.24116 
4.9143 0.21240 
5.8529 0.17906 
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V. EXPERIMENTAL WORK 

A s  p a r t  of a cont inuing p r o j e c t  i n  t h e  a rea  of non- 

isothermal wal l  hea t  t r a n s f e r ,  a p a r a l l e l  p l a t e s  tes t  f a c i l -  
i t y  was cons t ruc ted  i n  t he  Stanford Universi ty  Mechanical 
Engineering Laboratory. For t h e  present  study t h e  f a c i l i t y  
was used t o  provide a check on t h e  severa l  assumptions 

embodied i n  t h e  tu rbu len t  a n a l y s i s ,  and t o  test  t h e  super- 
pos i t i on  technique. The t e s t  f a c i l i t y  i s  descr ibed i n  
Sect ion V.A and t h e  experimental r e s u l t s  a r e  discussed i n  
Sect ion V.B. 

V. A. Descr ipt ion of Apparatus 

1. General 

The p a r a l l e l  planes t e s t  apparatus  c o n s i s t s  of two 

p a r a l l e l  copper p l a t e s  which can be water heated (or  cooled) 
from the  backsides ,  a system t o  supply and m e t e r  a i r  passing 
between the  p l a t e s ,  a water hea t ing  system, and thermocouple 
c i r c u i t r y  f o r  p l a t e  temperature and hea t - f lux  measurements. 

The p l a t e  spacing and a i r  flow rate can be var ied  such 
t h a t  Reynolds numbers ranging from 500 t o  100,000 can be 
achieved, and t h e  p l a t e s  can be heated such t h a t  t he  e f f e c t s  

of asymmetric hea t ing  and longi tudina l  v a r i a t i o n s  i n  wal l  
hea t  f l u x  or  temperature can be s tudied .  

2 .  The t e s t  s ec t ion  

The i n f i n i t e  p a r a l l e l  planes a r e  approximated by two 
p a r a l l e l  v e r t i c a l l y  mounted p l a t e s ,  each 49.25 inches i n  
t h e  a i r  flow ( v e r t i c a l )  d i r e c t i o n  and 24  inches w i d e .  The 
spacing between t h e  p l a t e s  can be var ied  between 0 and 6 

inches by s l i d i n g  them along their  four  supporting s h a f t s ,  
on which they a r e  ball-bushing mounted; t h i s  not only allows 
the  p l a t e s  t o  be separated f o r  po l i sh ing ,  b u t  a l s o  provides 
f l e x i b i l i t y  f o r  varying the hydrodynamic en t ry  length  and 

f o r  fu tu re  rec tangular  passage s tudies .  Figure V . A . l  shows 
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t he  p a r a l l e l  p l a t e s  ro t a t ed  90' t o  a hor izonta l  pos i t ion  

and spread a p a r t  f o r  pol ishing.  
The a i r  is  contained between t h e  p l a t e s  by two Plexi- 

g l a s  spacers  running t h e  length  a t  each edge. These 
spacers  a r e  0.5 inches wide and of a th ickness  equal t o  the  

des i red  p l a t e  spacing. A rec tangular  groove running the  
e n t i r e  length  i s  machined i n t o  the  two faces  of each t o  
provide f o r  a l i n e a r  "0" r i n g  s e a l .  

A two-dimensional P lex ig las  nozzle provides t h e  t r an -  
s i t i o n  between a l a r g e  plenum chamber and t h e  p l a t e  channel. 
Both plenum and nozzle a r e  descr ibed i n  Sect ion V.A.3. 

Each p l a t e  is  composed of 48 1- by 24-inch copper 
c e l l s ,  each separated from i ts  neighbors by a thermal in su -  
l a t o r  cons i s t ing  of a 0.031- by 24-inch s t r i p  of 25-percent 
p l a s t i c i z e d  K e l - F  p l a s t i c ,  as shown i n  Figure V.A.2. The 
thermal conduct iv i ty  of t h i s  p l a s t i c  w a s  measured and found 

t o  be 0.08 Btu/hr-ft"- 'F/ft.  

of each p l a t e  can be heated (or  cooled) ind iv idua l ly  t o  any 
des i red  temperature between ambient and 180' F by passing 

water through t h e m .  The 24 c e l l s  forming the o the r  end 

cannot be hea ted ,  and c o n s t i t u t e  an a d i a b a t i c  wal l .  The 
p l a t e s  a r e  mounted on the  four supporting s h a f t s  such tha t  

the heated ends a r e  always opposi te  each o t h e r ,  b u t  the 

p l a t e s  may be re leased  from the  nozzle ,  and t h e i r  bearing- 
mounted support ing frame (see Fig.  V.A.3) r o t a t ed  180°, so 
t h a t  t e s t s  may be conducted i n  e i t h e r  of two ways; i n  one, 
t h e  a i r  f i r s t  passes  through the  ad iaba t i c  s ec t ion  so t h a t  

the  ve loc i ty  p r o f i l e  becomes e s t ab l i shed  before  the heated 
sec t ion  is reached ( the  thermal entrance length  problem), 
and i n  t h e  o the r  t he  a i r  flows from t h e  nozzle d i r e c t l y  
i n t o  the heated sec t ion  ( the  hydrodynamic entrance length  

problem). The present  tests w e r e  confined t o  the former 
arrangement. 

The 2 4  c e l l s  forming one end 
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re V. . The Test Section and Supporting Structure 
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Each ce l l  is an epoxy bonded lamination of a 0.5- by 

1.0-inch rec tangular  OFHC copper tube of 0.062-inch w a l l  
th ickness ,  t h r e e  0.0156-inch-thick strips of Bakel i te ,  and 
a 0.125-inch-thick s t r i p  of OFHC copper,  as shown i n  Figure 
V.A.4. The cells are mounted so t h a t  t h e  copper s t r i p  faces 
t h e  a i r  channel.  A 30-gauge iron-constantan thermocouple 
i s  imbedded near t h e  cen te r  of each copper s t r i p ,  t he  lead 
w i r e s  being fed  out  t o  t h e  cel l  end i n  a shallow groove 

mil led i n  t h e  i n t e r n a l  f ace  of t h e  s t r i p .  Thus t h e  p l a t e  
wal l  temperature can be measured a t  48 po in t s  along i ts  
flow length .  The heated ce l l s  each have a Beckman and 
Whitley, Pnc. thermopile type h e a t  f l o w  t ransducer  mounted 
i n  t h e  cen te r  Bakel i te  lamination. Since t h e  thermal 

resistance network i s  such t h a t  e s s e n t i a l l y  a l l  t h e  h e a t  
t r a n s f e r r e d  between a i r  and copper s t r i p  a lso passes through 
t h e  Bakel i te  t o  (or from) t h e  copper tub ing ,  t h e  h e a t  flow 
transducers  enable the  w a l l  h e a t  f l u x  t o  be measured a t  
24 po in t s  along t h e  heated h a l f  of each p l a t e .  

During operat ion each copper s t r i p  is e s s e n t i a l l y  iso- 
thermal,  b u t  each may be maintained a t  a d i f f e r e n t  tempera- 

t u r e  because of t h e  Kel-F i n s u l a t i o n  between them. The 
temperature l e v e l s  of t h e  heated cel ls  are con t ro l l ed  by 
varying t h e  temperature of w a t e r  streams passing through 
t h e  rec tangular  tube por t ion  of them. This w a t e r  is  i n t r o -  

duced t o  t h e  cells  through a 1/4-inch b r a s s  tube soldered 
i n  each end; t h e  ends of t h e  unheated cells are blanked of f  
with brass plugs.  

The back side of each p l a t e  (composed of t h e  rectangu- 

l a r  copper tube s i d e  of t h e  cells)  is  insu la t ed  with a 
3-inch-thick pad of FibergPas. Additional i n s u l a t i o n  is 

packed around t h e  p l a t e  edges during operat ion.  
During t h e  cons t ruc t ion  of t h e  p l a t e s  each completed 

bonded ce l l  assembly w a s  machined f l a t  on a l l  s ides .  They 
then w e r e  l i n e d  up on a plane table, rec tangular  tube side 
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down, and bonded toge ther  with an epoxy r e s i n .  The sepa- 

ratdng strips of Kel-F plastic w e r e  sodium etched t o  accept  

t h e  bond. The r e s u l t i n g  .plate  w a s  then  bonded t o  t w o  
1/8-inch s i l i c o n  rubber pads running i ts  length ,  and then 
t o  two aluminum I beams, which w e r e ,  i n  t u r n ,  bo l t ed  t o  two 
aluminum channels containing t h e  ba l l  bushings f o r  s h a f t  

support .  This assembly is shown i n  Figure V.A.2. 

The r e s u l t i n g  r ig id  s t r u c t u r e s  w e r e  clamped t o  t h e  
table of a large v e r t i c a l  boring m i l l ,  on which t h e  e n t i r e  
copper s t r i p  sur face  w a s  machined f l a t .  This suspensive 

process w a s  followed by a period of hand sanding and pol ish-  
ing u n t i l  a mirror f i n i s h  w a s  produced. 

3. The a i r  system 

The a i r  system c o n s i s t s  of an 800 cfm. maximum f l o w  
rate, 30-inch H 2 0  maximum s t a t i c  pressure Buffalo cen t r i fu -  
g a l  blower, a f l o w  r egu la t ing  valve,  t w o  p a r a l l e l  o r i f i c e  

metering s e c t i o n s ,  a screened plenum chamber, and an ad jus t -  
a b l e  two-dimensional nozzle for introducing t h e  a i r  i n t o  
t h e  test sec t ion  between the two p a r a l l e l  plates. A f t e r  

passing up between the p l a t e s  the a i r  i s  discharged i n t o  
the  labora tory .  The a i r  system is  shown i n  schematic form 

i n  Figure V.A.5. The b l o w e r  and metering s e c t i o n  por t ion  
is  shared with a companion apparatus ,  an annular passage, 
w h i c h  is  described by Lundberg, e t  a l .  37 

The t w o  metering s e c t i o n s  with their  f l a t  p l a t e  o r i -  
fices w e r e  constructed according t o  ASMF, s tandards.  Each 

can be equipped w i t h  one of t w o  o r i f i c e s .  The  p e r t i n e n t  
dimensions of the t w o  a l t e r n a t i v e  sec t ions  are as follows: 

Duct D i a m e t e r  ( i n . )  O r i f i c e  D i a m e t e r  ( i n .  ) j3 = d/D 

6 (. 367 
6.367 
1.498 
1.498 

4.225 
1.910 
0.824 
0.375 

0.664 
0.300 
0.550 
0.250 
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O r i f i c e  upstream s t a t i c  pressure  is  measured by a 
30-inch v e r t i c a l  water manometer, and orifice d i f f e r e n t i a l  
pressure by one of t h r e e  p a r a l l e l  devices ,  a 16-inch v e r t i -  

cal w a t e r  manometer, o r  an inc l ined  o i l  manometer having a 
range of e i t h e r  1 or  5 inches of w a t e r .  The d i f f e r e n t i a l  
manometers w e r e  ad jus ted  from t i m e  t o  t i m e  by comparison 
with a micro-manometer, and the e n t i r e  me te r ing  system w a s  
checked out  by running it i n  series with a labora tory  

por tab le  nozzle tank with a w e l l  e s t ab l i shed  c a l i b r a t i o n .  
A t o t a l  a i r  flow range from 1 t o  750 c f m .  can be measured 
with t h i s  metering system with a probable uncer ta in ty  of 
about - +1 percent .  

The  plenum chamber and nozzle assembly i s  shown i n  
Figure V.A.6. The chamber c o n s i s t s  of a re inforced ,  s ea l ed ,  
plywood box, 24 by 24 inches,  by 42 inches i n  t h e  f l o w  

d i r e c t i o n .  Three screens are used t o  in su re  a uniform 

d i s t r i b u t i o n  of low turbulence a i r  a t  the  nozzle i n l e t .  
The two nozzle ha lves  themselves f o r m  t he  t o p  of t h e  plenum 
chamber, being a t tached  both t o  it and t o  t h e  p a r a l l e l  

plates. 
Each nozzle h a l f  is  made from a l/2-inch p l a t e  and 

qua r t e r  c i r c u l a r  cy l inde r  of P lex ig las .  The  p l a t e  has a 
t h i n  neoprene f l a p  bonded around i t s  periphery on three 

edges and the c y l i n d r i c a l  nozzle p iece  on the four th .  
During opera t ion  the f l a p s  are clamped t o  the plenum cham- 
ber top ,  thus  providing a seal. A l i n e a r  "0" r i n g  i n  a 
rec tangular  groove provides t h e  s e a l  between the t o p  of the 

nozzle and t h e  bottom edge of each p a r a l l e l  p l a t e .  End 
blocks are posi t ioned between the nozzle ha lves  a t  each end, 
and duct-seal  p u t t y  i s  used t o  f i l l  any remaining cracks. 
The e n t i r e  a i r  system w a s  checked w i t h  soapy w a t e r  for 

leaks before  operat ion.  
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4. The w a t e r  system 

The heated cells of t he  p a r a l l e l  p l a t e s  a r e  heated (or  
cooled) by a stream of steam-heated water passing through 
the  rec tangular  tubing. There a r e  48 such streams i n  t he  
system, one f o r  each heated cell.  The h e a r t  of t he  system 
is a 48-channel temperature regula tor  cons is t ing  of 48 
steam-water mixing sec t ions  designed t o  minimize v ib ra t ion  

and hammer (see Figs .  V.A.7 and V.A.8), and 48 f ine-cont ro l  
needle valves  t o  regula te  t h e  steam flow i n t o  each mixer 
and hence t o  regula te  the water temperature leaving each 
mixer. The ho t  water i s  c a r r i e d  t o  the two p a r a l l e l  p l a t e s  
through 48 1/4-inch polyethylene tubes .  

A f t e r  passing through t h e  hea t ing  cells of t he  p l a t e s  

t he  water again e n t e r s  a bank of polyethylene tubes which 
c a r r i e s  it t o  a c o l l e c t o r  trough, i n t o  which it is e j ec t ed  
i n  48 hor izonta l  j e t s .  These j e t s  a r c  downward and impinge 
on the  f l a t  P lex ig las  bottom of the  t rough,  and, s ince  the  

poin t  of impingement i s  r e l a t e d  t o  the  flow r a t e  i n  each 
tube,  the  trough serves  a s  an  e f f e c t i v e  s u b s t i t u t e  f o r  48 
ind iv idua l  flow m e t e r s .  The flow rate i n  each tube m u s t  be 
a t  l e a s t  1 /2  gpm. t o  ensu re  a neg l ig ib l e  water temperature 
change through the heated c e l l s .  From the  c o l l e c t o r  trough, 
the w a t e r  d ra ins  t o  a sewer. 

On the upstream s i d e  of t he  temperature r egu la to r ,  t he  

cold w a t e r  i s  suppl ied by a c e n t r i f u g a l  pump. It is  drawn 
from a 30,000-gallon sump loca ted  beneath t h e  labora tory ,  
and f i l t e r e d  before  en te r ing  the mixing sec t ions  i n  the 

temperature regula tor .  The sump l e v e l  is  cons tan t ly  main- 
ta ined  from a c i t y  water supply. 

The regula tor  s t e a m  is  suppl ied at, 40 ps ig  by a 
45-horsepower b o i l e r  loca ted  near t he  test  apparatus .  The  

steam passes through a strainer and a c e n t r i f u g a l  steam 
d r i e r  before  being introduced t o  the mixing sec t ions .  

190 



k w 
k 
a, 
c, 
$ 
c, 
0 c 

I 

i I - - - - - - -  -1 a, 
0 1  

9 
2 

I 
a, 

E 
k 
a, 
c, 
Id 
3 
h I 
c, 
-4 __3L_ 
U 

VI rn 
Id a 
h 
A 
tr 
F: 
-4 
c 
rd 
a, 
rl 
U 

k 
a, c 
-4 
Id 
k 
c, 
[rl 

3.1 m 
k 
a, 
c, 

f 
E 
id 
a, 
c, m 
a, 

E 

191 



steam in from needle valve 
(Hoke No. 4PB-286) 

1/4" brass tubing 

x 1/8" x 1/3" copper 
heat exchanger tee 

cold water 
in from 

cold water 
manifold 4 holes, no. 54 drill 

brass end plug 
1/4" brass tubing 

1/4" brass tubing 

hot water out to 
parallel plates 

(Note: All connections are soft-soldered.) 

Figure V.A.8. Detail of a Steam-Water Mixing Section 
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Since the epoxy resin bonds in the parallel plate 
structure begin to lose strength at temperatures in excess 
of 200' F, an automatic safety device is incorporated in 
the water system to insure that water (or steam) hotter 
than 180' F cannot reach the plates. 
of several thermostat switches in selected polyethylene 
tubes and a solenoid valve in the main steam line. 

This device consists 

5. Electrical instrumentation 

The electrical instrumentation consists of a thermo- 
couple system to measure plate and air temperatures and a 
heat meter system to measure plate heat fluxes. The thermo- 
couples used were all made from 30-gauge, glass insulated, 
iron-constantan wire, samples of which were calibrated 
against NBS thermometers and found to deviate from the 
standard tables 
range of interest. Ninety-six thermocouples are used to 
measure plate temperatures, one being imbedded in each cell 
as described in Section V.A.2. Seven shielded couples are 
mounted in the air stream at the top of the plenum chamber 
to measure the inlet air temperature, and several more are 
used for measuring air metering section temperatures, 
ambient wet and dry bulb temperatures, and inlet water tem- 
perature. All thermocouples are referenced to a distilled 
water ice bath. 

by a maximum of - +0.20° F throughout the 

The thermocouple voltages are read with a Leeds and 
Northrup portable precision potentiometer. They are dis- 
tributed to this instrument through a multiple selector 
switch arrangement shown in Figure Y.A.9. Copper lead 
wires run from the selector switch console to isothermal 
zone boxes near the thermocouple installation areas, at 
which points they are connected to the thermocouple wires. 
The zone boxes for the plate thermocouples consist of multi- 
pin connectors, since it is necessary to unhook these 

193 



couples to rotate the plates or to free the selector switch 
console for use with the annulus apparatus. .Details of the 
thermocouple circuit are shown in Figure V.A.10. 

The wiring system for the 48 heat meters is similar to 
that for the plate thermocouples, except that no ice refer- 
ence junction is used here since the heat meters indicate 
a temperature difference across a thermal resistance (the 
center Bakelite lamination) rather than a temperature 
itself. Details of the circuit are shown in Figure V.A.ll. 

Since the heat meter sensitivities differed somewhat, 
a Hewlett-Packard 412A DC VTVM was used to record their 
voltage outputs. It was found that the high input impedance 
of this instrument resulted in a negligible current flow; 
thus it acted essentially as a potentiometer. 

All the heat meters were calibrated in place after the 
plates were completely constructed and mounted. This was 
accomplished with a nichrome ribbon heater arrangement 
which effected a measured heat flow through a cell into its 
water passage. With this procedure it is believed that the 
heat meter sensitivities were obtained with a probable 
uncertainty of - +5 percent. 

A photograph of the thermocouple and heat meter selec- 
tor switch console, the manometer board, and the tempera- 
ture regulator valves is presented as Figure V.A.12. 
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V. B. Comparison of Experimental and Theoretical Resul ts  

Several  t u rbu len t  f low experimental  runs w e r e  con- 
ducted a t  var ious Reynolds numbers and with seve ra l  w a l l  
boundary condi t ions ,  and t h e  r e s u l t i n g  d a t a  are presented 
i n  Figures V-B.l-5. I n  a l l  cases t h e  p l a t e  spacing w a s  set 
a t  0.5 inches.  I n  d iscuss ing  t h e  d a t a ,  f i r s t  some general  
remarks p e r t i n e n t  t o  a l l  runs w i l l  be made, and then each 
run w i l l  be treated indiv idua l ly .  

I n  a l l  cases h e a t  f l u x  p red ic t ions  r e s u l t i n g  from t h e  
use of t h e  fundamental so lu t ions  of t h e  f i r s t  kind are 
shown. U s e  of t h e  so lu t ions  of t h e  second kind w a s  pre- 
cluded by t h e  f a c t  t h a t  they are not  known f o r  small  enough 
values  of x. I n  applying t h e  fundamental s o l u t i o n s ,  t h e  
w a l l  temperatures w e r e  approximated by s t e p s  of x length 
5x10-’; t h u s ,  i n  t h e  cases where t h e  w a l l  temperature v a r i e s  
only s l i g h t l y  the  comparison of theory and experiment pro- 
v ides  a good check on t h e  theory,  b u t  i n  t h e  r ap id ly  varying 

w a l l  temperature regions e r r o r s  due t o  t h e  s t e p  approxima- 
t i o n  can occur.  

- 
- 

It w i l l  be noted t h a t  w a l l  temperatures are p l o t t e d  i n  
t h e  negat ive x region; t h i s  is because h e a t  l e a k  near t h e  
thermal e n t r y  caused seve ra l  unheated cells  upstream of it 
t o  have temperatures o ther  than t h e  a i r  i n l e t  temperature,  

te 9 

theory.  

- 

and t h i s  e f f e c t  w a s  included i n  t h e  app l i ca t ion  of t h e  

By and large,  t h e  theory overpredic t s  t h e  magnitude 
of the h e a t  f l u x  by about 10  percent .  Since t h e  h e a t  f l u x  
d a t a  is  f e l t  t o  have an uncer ta in ty  of - +7 percent ,  t h i s  is  
a s i g n i f i c a n t  dev ia t ion ,  and, a l l  f a c t o r s  considered, it is 
most probable t h a t  it is  a r e s u l t  of using an eddy d i f f u -  
s i v i t y  ra t io  larger than t h a t  a c t u a l l y  e x i s t i n g .  The 

Nusselt  number d a t a  of Leung3* lends credence t o  t h i s  
hypothesis;  he f i n d s  good agreement with a theory based on 
a cons tan t  value of cH/eM = 1 . 2  ou t s ide  t h e  sublayers.  
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Turning now t o  t h e  ind iv idua l  test  r e s u l t s ,  Figures 

V.B.1 and V.B.2 present  r e s u l t s  for  cons tan t  w a l l  tempera- 
t u r e s  which bracket t h e  i n l e t  temperature.  H e r e  t h e  theory 
predicts the genera l  t rend  of the  d a t a ,  b u t  overpredic t s  
i t s  magnitude. Figure V . B . 3  treats cons tan t  w a l l  tempera- 
t u r e s  which both l i e  above the i n l e t  temperature; again,  

t h e  d a t a  t r end  is predic ted  better than i t s  magnitude. 
I n  Figure V.B.4 t h e  upper w a l l  i s  subjected t o  a t e m -  

pera ture  s t e p  and then a ramp, while the lower w a l l  t e m -  
pera ture  i s  uniform af te r  the s t ep .  The comparison a t  t h e  
l o w e r  wal l  i s  s i m i l a r  t o  those of t he  preceding f i g u r e s ,  
b u t  the upper w a l l  cornparison s e e m s  somewhat better; t h i s  

is because the s t e p  approximation of the ramp tends t o  
underpredict ,  or more p rec i se ly ,  t o  lag the exact predic- 
t i o n .  It is  i n t e r e s t i n g  t o  note  t ha t  a t  the upper w a l l  
the heat f l u x  a c t u a l l y  decreases  f o r  a s h o r t  d i s t ance  down- 
stream of t h e  s t e p  even though the w a l l  temperature i s  

increas ing  up the ramp. 
Figure V.B.5 p resents  r e s u l t s  f o r  a more complicated 

step-ramp combination, and again the l a g  due t o  t h e  s t e p  
approximation i s  apparent.  H e r e  the h e a t  f lux downstream 
of the i n i t i a l  upper w a l l  s t e p  does n o t  diminish a s  i n  the 

previous case; t h i s  is  because the s t e p  i s  less severe ,  and 
t h e  ramp s lope  is  g r e a t e r .  
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VI. CONCLUSIONS 

The treatment,of the laminar problem in Section I11 
is essentially complete; all wall boundary conditions of 
interest are discussed (with the exception of specified 
wall resistance and wall internal temperature), the solu- 
tions are presented with an accuracy quite sufficient for 
practical purposes, and the method of use of the solutions 
is presented. Experimental verification of the laminar 
theory is not included herein, but this can be found in the 
work of Lundberg, et a1.37 , whose treatment of the circu- 
lar annular passage parallels that of the present study. 

As opposed to the laminar work, the treatment of the 
turbulent case is really little more than an introduction 
to the general problem, and the development of a method of 
approach. It cannot be considered complete in that it 
applies to only one Prandtl number over a limited Reynolds 
number range, and, as discussed in Section V.B, there is 
some doubt as to the suitability of the eddy diffusivity 
ratio employed. Hence, it is to be hoped that in the 
future additional fundamental diffusivity studies will be 
conducted, and that the results will be applied to the 
problem herein for a wide range of Reynolds and Prandtl 
numbers. 

Looking back over the fundamental solution results, - 
it is of interest to note several important x regions for 
non-isothermal wall heat transfer. First, it can be seen 
that the effects of a wall temperature (or heat flux) step 
are completely damped out at an x distance downstream of 
about 10-1 for laminar flow and about for turbulent 
(Pr = 0.70). Recalling the definition of x, it can be 
seen that for equal Dh and Pr the turbulent thermal 
entrance length is apt to be about as long, or perhaps 
somewhat longer, than its laminar counterpart. Examination 

- 

- 
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of the fundamental solutions also reveals that constant 
heat flux thermal entrance lengths tend to be about one 
half to one order of magnitude shorter than constant wall 
temperature thermal entrance lengths. 

Comparing the magnitudes of the various io sub- 
scripted fundamental solutions with those with ii sub- 
scripts, it can be seen that the effects of a temperature 
(or heat flux) step at one wall are not apparent at the 
opposite wall for an x distance downstream of about 
for laminar flow and about for turbulent (Pr = 0.70). 
This propagation delay creates a type of "zone of silence" 
above the step. 

- 
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APPENDIX A 

DERIVATION OF EXPRESSIONS USEFUL FOR EVALUATING 
THE HIGHER EIGENCONSTANTS 

I n  t h i s  appendix are der ived eigenconstant  r e l a t i o n s  
used i n  Sect ions III.G.3 and IV.G.3 t o  eva lua te  t h e  higher  

e igenconstants ,  These r e l a t i o n s  are v a l i d  f o r  - a11 t h e  
eigenconstants ,  b u t  w e r e  found inconvenient t o  use f o r  the 

lower ones which w e r e  ca l cu la t ed  numerically from ( I I I . B . 2 2 )  

and (IV.B.24). 

R e c a l l  that  the Sturm-Liouville equation r e s u l t i n g  
from t h e  laminar t reatment  is  

Y ”  + A; (1 - 92) Yn = 0 n 

and t h a t  f o r  t h e  tu rbu len t  case is  

These equat ions are of the genera l  form 

- (hYI;) + h;wYn 0 
a9 

w h e r e  f o r  t h e  laminar case 

h - 1  

and f o r  the tu rbu len t  case 

“M ‘€3 Pr h = 1 + - - -  
“M 
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Now, f r o m  ( I I I . B . 2 2 )  and (IV.B.24) t h e  general  equation 
for  t h e  eigenconstants  is  

- -1 - -  
+1 
r 

'n (A.4) 

J 
-1 

This expression w i l l  now be pu t  i n  m o r e  convenient form f o r  
higher  e igenconstant  evaluat ion.  

Consider first t h e  numerator of (A.4). Combining w i t h  
(A.3) and i n t e g r a t i n g  by p a r t s  t w i c e  y i e l d s  

+1 +1 

-1 -1 

f dhyA 
-1 r 1 - -  

TI hdhYn 

+1 

-1 r 
Now f r o m  (IV.B.25) it is  seen t h a t  for boundary condi t ion 
cases 1, 3 ,  and 4 

So f o r  t hese  cases the i n t e g r a l  i n  (A.4) vanishes.  And 
from (IV.B.26) t h e  analogous expression f o r  case 2 is 
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So for t h i s  case t h e  i n t e g r a l  i n  (A. 5) becomes 

i' Yn - d (he;,) dy = -$ Ynw dy 
-1 i' 

-1 

Introducing (A.3) t h i s  becomes 

But t h e  case 2 boundary condi t ions s t i p u l a t e  t ha t  
a t  both w a l l s ;  hence the i n t e g r a l  vanishes i n  t h i s  case too.  

YA = 0 

Thus, recognizing tha t  h = 1 a t  both w a l l s ,  it is  
seen from (A.5) t h a t  the  numerator of (A.4) is  

Consider next  the denominator of (A.4). To put  it i n t o  
t h e  form sought,  one opera tes  on (A.3). D i f f e r e n t i a t i o n  

w i t h  r e spec t  t o  An y i e l d s  * 

a 
ah 1-1, 

*Herein - a is used t o  denote 
n a?! 
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Interchanging the order of  d i f f e r e n t i a t i o n  

Yn dy and rearranging i' Applying t h e  operator  

-1 

Y n n  A2w 2 df} 
n 

+ J' 
-1 

In t eg ra t ing  t h e  f i r s t  t e r m  on the  right-hand side by p a r t s  
t w i c e  y i e l d s  

B u t  from (A.3) it is  seen t h a t  t h e  integrand on t h e  r i g h t -  
hand s i d e  is i d e n t i c a l l y  zero.  Hence, noting t h a t  h = 1 

a t  both w a l l s ,  one obta ins  

+1 

(A.7) 1 wy", df = - - 
'n 

-1 -1 

Thus, combining (A.4), (A.61, and (A.7) 
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+1 \ 

Note t h a t  t h i s  equat ion app l i e s  fo r  both laminar and 

t u r b u l e n t  flow. 
Now the appropr ia te  expressions f o r  each of the four  

fundamental cases  w i l l  be set  f o r t h .  

Case One 

Here the boundary condi t ions  are 

Y n ( - l )  = 0 

Y n ( l )  = 0 

so 

Case Two 

H e r e  t h e  boundary condi t ions  a r e  

Y p )  = 0 

u p  = 0 

so 
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C a s e  Three 

H e r e  t h e  boundary condi t ions are 

Y A ( - l )  = 0 

Y n ( l )  = 0 

so 

C a s e  Four 

H e r e  t h e  boundary condi t ions  are 

Y n ( - l )  = 0 

= 0 

so 
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APPENDIX B 
DETAILS OF THE NUMERICAL CALCULATION 

OF THE LAMINAR EIGENFUNCTIONS 

The numerical integration technique employed is pre- 
sented in Milne38 as Method XI1 for linear equations of sec- 
ond order, and will not be repeated here. The interval from 
y = -1 to = +1 was divided into 400 equal increments 
for the integration. The initial value of the 7,; "guess" 
was that obtained from the asymptotic solution of Section 
111. G. 3 

After each integration across the interval from y = -1 
to = +1, the eigenfunction was normalized by calculation 
(Simpson's rule) and application of the factor 

The next trial was then computed by the Berry and 
de Prima method and the integration was repeated. Since 
closure is very rapid, the iterations were continued until 
no change occurred in A2 (the computer carries eight 
significant figures). 

n 

To provide a check on the accuracy of the method the 
calculated eigenvalues are compared with those reported by 
other investigators in Table B . 1 .  The majority of the 
values compared were published during the preparation of 
the present work. 

After these calculations were completed L~ndberg'~ per- 
formed similar calculations for an annular passage using a 
more sophisticated integration scheme (a predictor-corrector 
method due to Hamming) and found that 250 increments pro- 
vided sufficient accuracy. 

The computer program is written in BALGOL language 
and is presented below. 
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2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

COMMENT COMPUTATION OF EIGENFlJNCTIONPt EIGENVALUES, 

AND EIGENCONSTANTS FOR THE PARALLEL PLANES 

LAMINAR FLOW FUNDAMENTAL SOLUTIONS$ 

COMMENT THE L I S T  OF FORMAT STATEMENTS$ 

FORMAT H E D l  (B48,*DETERMINATION OF LAMBDA+,WSI$ 

FORMAT HED2 (B47,*RESULTS OF F I N A L  ITERATION*W3)$  

FORMAT T R Y  ( * Y O = * , F ~ ~ ~ ~ , * Y P O = * , F ~ ~ O ~ ~ * Y N = * ~ F ~ ~ O ~ ~ * Y P N = * ~  

F14o8,*LL=*,Fl408,*LLB=*~Fl408~W4)$ 

FORMAT ENDS ( * C A S E = * , X ~ ~ O , * Y O = * , F ~ ~ O ~ Y * Y P O = * * F ~ ~ ~ ~ *  

+ Y N = * , F ~ ~ ~ ~ S * Y P N = * ~ F ~ ~ O ~ ~ W ~ ) $  

FORMAT TRY2 ( * L A M ~ D A = * ~ F ~ ~ o ~ , B ~ , * L A M B D A  SQUARED=*, 

W4,B49,*THE VALUES OF Y FOLLOW*,W4)S 

FORMAT TRY3 (6F20m8,W41$ 

FORMAT TRY4 (*THE EIGENCONSTANT I S  *,F1408,W4)$ 

COMMENT THE L I S T  OF ARRAY DECLARATIONS$ 

ARRAY Y ~ 5 0 0 I ~ Z t 5 0 0 ) ~ W F ~ 5 0 0 ) ~ F ~ 5 0 0 ~ ~ ~ ~ 5 0 ~ ~ ~ ~ ~ 5 0 0 ~ ~  

COMMENT SOME FURTHER DECLARATIONS’AND 

SETTING OF SOME I N I T I A L  VALUES$ 

INPUT VALUES (L,YO,YPOIDELICASE)S 

28ooWRITE ( S 3 H E D l ) Z  

2 READ ($%VALUES)$ 

2 N = ( 2 o O ) / ( D E L ) $  

2 V=O$ 

2 X=03 

2 LL=LoL$ LLB=O$ 

2 FOR I = ( I , l , N ) B  BEGIN 
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2 WF( I 

2 H ( I )  

2NEWLeoFOR 

2 G(I) 

2 F ( 1 )  

2 COMMENT INTEGRATION O F  THE OIFFERENTIAL EQUATIONS 

2DEINTaeDYO=YPOoDEL$ 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Y(l)=DYO+YO$ 

ZO=YO$ 

Y P N = ( D Z I + Z ( N - l ) ) ( ( G ( N - 1 ~ ~ / ~ 1 2 ~ ~ + G ( N - l ~ ~ ) ~ / D ~ l S  

COMMENT CALCULATION OF THE NQRMALIZATIOM 

FACTOR BY SIMPSONS RULE INTEGRATIONS 

P=OeOS 

Q = O * O S  



2 FOR I = ( l ? l , f t l ) B  

2 Y I I ) = Y f I ) / S $  YO=YO/S$ YPO=YPO/S$ 

2 COMMENT TEST FOR CONVERGENCES 

2 I F  (LL NEQ L L B I $  GO TO BDP$ 

2 WRITE ($$HED2)$  

2 GO QUITS 

2 COMMENT THE BERRY AND DE PRIMA CALCULATION 

2 OF THE NEXT EIGENVALUE GUESS$ 

28DP.e EITHER I F  CASE EQL 1% BEGIN 

2 LLB=LL% 

2 L L = L L - ( Y ( N ) I I Y P N ) $  ENDS 

2 OTHERWISE3 BEGIN 

2 LLB=LL$  

2 L L = l L + ( Y I N ) ) ( Y P N )  ENDS 

2 OUTPUT T R Y l I Y O , Y P O , Y t N ) r Y P N ~ L L B 1 $  

2 WRITE (SBTRY1,TRY)S 

2 GO NEWL$ 

2QUITooWRITE ($$IC,ENDS)$ 

2 OUTPUT I C  ICASE,YOrYPO,YIN)wYPN)S 

2 WRITE($$LLID,TRY2)% 

2 OUTPUT L L I D  I S Q R T ( L L ) , L L ) $  

2 OUTPUT ORDVAL (YO9FOR I = ( l r l ~ N ) $ Y ( I ) ) $  

2 WRITE (890RDVAL,TRY3)$ 

2 COMMENT CALCULATION OF THE EIGENCONSTANT 

2 BY SIMPSONS RULE INTEGRATIONS 

2 P=OoO$ 
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2 

2 

2 

2 

2 

2 

2 

2 
- 
2 

2 

2 

2 

OUTPUT CONST (CS$ 

GO TO 8 $  

F I N I S H $  
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TABLE B.l 
COMPARISON OF THE LAMINAR EIGENVALUES 

REPORTED BY SEVERAL INVESTIGATORS 

Present Study 

1.681597 
3.672294 
5.669861 
7.668812 
9.668245 
11.66790 
13.66766 

C a s e  O n e  

m0wn7 P r i n s ,  Mulder C e s s  & 
& S ~ h e n k ~ ~  Shaf f er l4 

1.6816 1.681595 1.6815953222 

5.6699 5.669857 5.6698573459 

9.6678 9.66824 9.6682424625 

13.6676614426 
( B r o w n  also 
presents the 
next s ix  
even A ' s )  

3.672291 

7.668809 

11.66791 

n Present  Study 

1 2.263144 
2 4 -287297 
3 6.297808 
4 8.3 03899 
5 10.30796 
6 12.31090 
7 14.31315 

C a s e  Two 

C e s s  & C e s s  & 
Shaffer12 Shaf f er l3 

2.263106 

6.29768 
4.287224 

8.30372 
10.3077 

14.3141 
12.3114 

C a s e s  T h r e e  and Four 

Present  Study Schenk' 

0.9546740 0.9547 
2.974334 2.9743 
4.981082 4.9812 
6.984656 
8.986928 
10.98853 
12.98973 
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APPENDIX C 

DETAILS OF THE NUME 
TURBULENT FULLY 

PROFILES AND EIGENFUNCTIONS 

1. 

The fully developed temperature profiles, discussed 
in Section IV.B, were all calculated in essentially the 
same manner, so only that of case one will be treated here. 
The equation requiring solution is given by (IV.B.25). 

r 1 

The boundary conditions are 

Qfd&l) = 0 

The first step in the solution involved the calcula- - 
tion of the 7 EM , - EH , and u (for case two) profiles 

EM 
for the Reynolds and Prandtl numbers of interest. This was 
accomplished in a straightforward fashion employing equa- 
tions (IV.B.7) and (IV.B.15), and the expressions in Section 
IV.B.4. Calculations were carried out at y intervals of 
0.002 and the results were stored on magnetic tape for 
future use. 

- 

Next (C.l) was integrated using a numerical scheme 
developed by M r .  I. H. Wentzien and Professor J. G. Herriot 
of the Stanford University Computation Center. This scheme 
employs a fourth order Adams predictor-corrector method 
(see Hildebrand*’) in the body of the interval and the 
Runge-Kutta method for starting. It has the v attractive 
feature of automatically i easing or decreasing the 
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step-width s i z e  during t h e  i n t e g r a t i o n  depending on the 

r e l a t i o n s h i p  between t h e  pred ic tor -cor rec tor  d i f f e rence  and 
prescr ibed r e l a t i v e  and absolu te  error l i m i t s .  When t h e  
step-width s i z e  is  decreased t h e  Runge-Kutta method is  used 

again for s t a r t i n g .  Since t h e  method i s  a c t u a l l y  set  up t o  
so lve  a system of f i r s t  order  d i f f e r e n t i a l  equat ions,  (C.1)  

w a s  reduced f o r  computational purposes t o  

The i n t e g r a t i o n  proceeded as an i n i t i a l  value problem 
w $ t h  O f d ( - l )  = 0 and 6 i d ( - l )  = 1, and then ,  u t i l i z i n g  
t h e  l i n e a r i t y  of t h e  equation, the r e s u l t s  w e r e  scaled by 
t h e  f a c t o r  required t o  make e f d ( l )  = 1, They w e r e  s t o r e d  
on magnetic tape  f o r  use i n  the  eigenconstant  ca l cu la t ions .  

2 .  The eigenfunct ions,  eigenvalues,  and eiqenconstants  

The s a m e  pred ic tor -cor rec tor  numerical scheme w a s  used 
t o  i n t e g r a t e  ( I V . B . 2 1 ) .  The equation was first reduced t o  

t w o  f irst  order  equat ions,  

2 2 1  



A third equation, 

was integrated simultaneously with the above two so that 
the normalization factor was obtained without a subsidiary 
Simpson's rule integration. 

As in the laminar case, the Berry and de Prima method 
was employed to converge on the correct eigenvalue. Having 
done this, the eigenconstant was calculated from (IV.B.24). 

The computer program used for the eigenfunction and 
eigenvalue calculations is presented below. 
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2COMMENT COMPUTATION OF EIGENFUNCtlOfdS AND EIGENVALUES FOR 

2 THE PARALLEL PLANES TURBULENT FLQW FUNDAMENTAL 

2 SOLUTIONS USING THE FOURTH ORDER ADAMS PREDICTOR- 

2 CORRECTOR METHOD, THE RUNGE-KUTTA METHOD FOR 

2 STARTING, AND ERROR CONTROLS$ 

ZINTEGER I,J,AA,BB~N,M,UHH,UMO,DOS$ 

ZINTEGER K E Y ~ , K E Y Z ~ K E Y ~ S K E Y ~ , K E Y ~ , K E Y ~ $  

ZBOOLEAN SKIP,KEEPERpZERT$ 

ZARRAY X(5,5),L(5,5),F(5,5),XP(5), 

2 E ( 5 ! ~ B ( 5 1 0 ) ~ D ( 5 1 0 ) ~ F 6 ~ 5 1 0 ) $  

ZFORMAT MESSAGE ( * I N  THE FOLLOWING CALCULATIONS H=*, 

2 X10*8,W2)5$ 

2FORMAT FRMTl(BZ,SlOe8,W4)8 

ZFORMAT FRMT2(810,6F16*8,WO)$ 

ZFORMAT I D L ( * C A S E = * ~ X ~ ~ O , B ~ , * R E = * P X ~ ~ O ~ B ~ ~ * P R - + + X ~ . ~ ~  

2 B ~ , * L L = * , F ~ ~ ~ ~ , B ~ , * L A M B D A = * , F ~ ~ . ~ P W ~ ) S  

ZFORMAT GAB21*Yl=*,F14e8,B5,*YPl=*~Fl4e8~B5~*YZ=*~ 

2 F14.8,B5,*YP2=*,F14.8,w4)8 

2FORHAT GAB4(*THE PREVIOUS VALUE OF LAMBDA SQUARED WAS * 9  

2 F1408,B5,+ AND LAMBDA WAS *~F14.8 ,W4)$  

ZFORMAT GAB5 (BlOO,Wl)I6 

2FORMAT DONE(B47,*RESULTS OF F I N A L  ITERATION*,W31$ 

2FORMAT GOMO(B50,*INTERMEDIATE RESULTS*,W3)$ 

20UTPUT NEWH(HlI6 

ZOUTPUT ORD(T)Z  

20UTPUT RESULTS (FOR I = ( l , l , E Q ) $ X ( I , J ) ) $  
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20UTPUT ID(CNU,RE,PR,LL,LLL)$ 

ZOUTPUT GAB ( YZ NOR ,YPZ. NOR ,YMN ,Y PN 1 s 

20UTPUT GABS(LLOLD,LLLOLD)S 

ZCOMMENT FUNCTIONS FOR FORWARD,CENTRAL, 

2 AND BACKWARD DIFFERENCE INTERPOLATIONS 

2FUNCTION FINT(CC,DDIEE,FF,GGIHH,II,JJ,KKI=CC+ 

2 H H ( D D - C C I + O o 5 ( H H ) ( I I ) ( E E - 2 . 0 D D + C G I +  

2 4oODD+CC)$ 

2FUNCTION CINT(CC,DD,EE,FF,GGIHH)=CC+O~~HH(DD-FF) 

2 +0o5HHoHH(DD-2o0CC+FF)+HH(HH~HHoHH~loO~/ l2oO~ 

2 ( E E - ~ o O D D + ~ ~ O C C - ~ O O F F + G G ) $  

ZFUNCTION BINT(CC,DD,EE,FFIGG,HH,II,JJ,KK)=CC+ 

2 H(CC-DD)+O~~HHOII(CC-~OODD+EE)+ 

2 L H H o I I o J J / 6 o O )  (CC-3*0(DD-EE)-FF)+  

2 ( H H o I I o J J ~ K K / ~ ~ ~ O ) ( C C - ~ ~ O ( D D + F F ) + ~ . O E E  

2 +GG 1 %  

ZCOMMENT SUBROUTINE FOR COMPUTING DERIVATIVES 

2 FOR EIGENVALUE DETERMINATIONS 

ZSUBROUTINE FUNCTS BEGIN 

2 EITHER I F ( T  LSS l o o ) $  BEGIN 

2 S = F I X ( T / D E L ) $  

2 U=T/DELS 

2 EITHER I F  ( T  EQL O)$BEGIN 
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2 
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2 
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2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
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2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

OTHERWISES BEGIN 

2 READ($$NEWVAL)$ 

2 INPUT GUESSIN(YZ,YPZ,LLL,KEYl~CNU~ZERLIT)$ 
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2 INPUT NEWVAL(EXPOREL,EXPOABS)$ 

2 READ($$CBSENU)$ 

2 INPUT CASENU(SKIP,EQ)$ 

2 READM(UHH$ZERT$FLISTI$ 

2 READM(UHHBZERTSDL1ST)S 

2 READM(UHH$ZERT$BLIST)$ 

2 MOVEM(UHH$DOS)$ 

2 READM(UHH$ZERTSREPR)$ 

2 INPUT FLISTtKEY1,FOR I=(l,l,N)$FB(II)$ 

2 INPUT DLIST(KEY2,FOR 1=(191,N)$D(I))$ 

2 INPUT BLIST(KEY3,FOR 1=(191,N)SB(Il)$ 

2 INPUT REPR (KEY6,RE,PR,FR)$ 

2N=1000$ 

2COMMENT SET UP INITIAL VALUES$ 

2 LL=LLL.LLL$ 

2 KEEPER=SKIPS 

2NEWL*oX(l,l)=YPZ$ 

2 X(291)=YZ$ 

2 X(3,1)=0.0$ 

2 SKIP=KEEPERS 

2 N=1000$ 

2 TEMP=()$ 

2 T=O$ 
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2 CODE=O$ 

2 ZERO=O$ 

2 DEL=(2oO/NlB 

2 INITIAL=03 

2 FINAL=2.0$ 

2 DEL= ( 20O/N) 

2 H=DEL$ 

2 COUNT=20$ 

2COMMENT BEG1 N 

2 SET UP ACCURACY TESTS$ 

2 IF SKIPS BEGIN 

2 AA=2% 

2 BB=4$ 

2 GO TO 2222 END$ 

2 RELTEST=14o2~(10~0*EXPOREL)$ 

2 ABSTEST=1402o (lOoO*EXPOABS)S 

2 FACTOR=lOoO*(EXPOREL-EXPOABS)S 

2 L6=14o2110oO*(EXPOREL-203~~S 

2 H=H+HS 

2COMMENT RUNGE KUTTA STARTING METHODS 

21111ooAA=2$ 

2 B8=25 

22222ooFOR J=(AA,lPBB)$ BEGIN 

2 M=J-l$ 

2 ENTER FUNCTS 

2 FOR I=(l,l,EQ)$ BEGIN 
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2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

23333oeFOR I=(l,l,EQ)$ 

2 XP(I)=X(I,2)$ 

2COMMENT XP(I)=DOUBLE INTERVAL RESULT TO BE 

2 USED IN ERROR ANALYSIS$ 

2 T=T-H$ 

2 H=Oe5H% 

2 WRITE t$$NEWH,MESSAGEI$ 

230 



2 B B = 3 0  

2 GO T O  2 2 2 2  ENDS 

2 I F  BB EQL 3% BEGIN 

2 J=3$ 

2COMMENT I S  ACCURACY CRITERION MET$ 

24444eeFOR I=(191,EQ)$ BEGIN 

2 E ( I ) = A B S ( X P ( I ) Y X ( I , J ) ) $  

2 EITHER I F  E ( I )  LSS ABS(X t I , J ) ) .RELTEST$ 

2 E ( I ) = E ( I ) / A B S ( X t I , J ) ) $  

2 OR I F  E ( I )  LSS ABSTESTS 

2 E ( I I = E ( I ) e F A C T O R B  

2 OTHERWISESBEGIN 

2 T tT -H$  

2 I F  J EQL 5 5  BEGIN 

2 FOR 1 = ( 1 9 1 9 E Q ) $  

2 

2 GO TO 1111 ENDS 

2 GO TO 3333 END$ END$ 

2 I F  J EQL 5$ 

2 GO TO 6666% 

2 AA=4$ 

2 88=4$ 

2 GO T O  2 2 2 2 %  END$ 

2COMMENT SHOULD ANY OF THE STARTING VALUES 

2 BE PRINTED OUT$ 

2 T=T-H-H-H$ 

X ( I 9 1) =X ( I 9 4  18 

231 



2 I F  CODE EQL 1$ 

2 TzFINAL-H$ 

2 FOR J = 1 2 , l t 4 ) S  BEGIN 

2 T=T+HB 

2 TEMP=TEMP+l$ 

2 9 9 9 9 0 s I F I T  GEQ F I N A L ) $  BEGIN 

2 I F  CODE EQL 1% 

2 GO ABLE$ 

2 GO SPECS ENDS 

2 A B L E o o I F  T GEQ F INALS 

2 GO SIMPS 

2 IF TEMP EQL COUNTS BEGIN 

2 W R I T  E ( $SORD, FRMT 1 )  S 

2 WRITE ( $%RESULTS 9 FRMT2 1 t6 

2 TEMP=QS ENDS ENDS, 

2 5 5 5 5 o e I F  T GEQ F INALS 

2 GO SIMPS 

2COMWENT BEGIN ADAMS METHODS 

2 M=4$ 

2 ENTER FUNCTS 

2 FOR I = ( l , l , E Q ) $  BEGIN 

2 XP(I)=X(I~4)+0~041666667Ho~55oOF(I,4)- 

2 ~ ~ o O F ( I ~ ~ ) + ~ ~ ~ O F ( I ~ ~ ) - ~ . O F ( I ~ ~ I ~ ~  

2 X ( I t S ) = X P ( I )  END$ 

2 T=T+HS 

2 M=56 
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2 ENTER FUNCTS 

2 FOR I=(l,ltEQ)$ 

2 X(I~5f=X(I~4)+0004166666?H0~9~OF~I,5)+ 

2 1 9 o O F ( I t 4 ) - 5 o O F ( I , S ) + F ( 1 , 2 f ) $  

2 IF SKIPS 

2 GO TO 6666% 

2 J=5$ 

2 GO TO 4444s 

26666.0FOR J=(2,1,5)$ 

2 FOR I=(l*lpEQ)$ BEGIN 

2 F(I,J-l)=F(I*J)$ 

2 X(IvJ-l)=X(I,J) ENDS 

2 TEMP=TEMP+l$ 

2 IF T GEQ FINAL$ BEGIN 

2 IF CODE EQL 1S 

2 GO BAKER8 

2 GO SPEC$ ENDS 

2BAKERooIF T GE 

2 GO SIMP$ 

2 IF TEMP EQL COUNT$ BEGIN 

2 J=4$ 

2 WRITE I$$ORDtFRMTl)$ 

2 WRITE ($$RESULTS,FRMTZ)$ 

2 TEMP=O$END$ 

2 IF SKIPS 

2 GO TO 5555s 
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2COMMENT TEST WHETHER INTERVAL CAN 

2 BE DOUBLED$ 

2 FOR I=(l,l,EQ)$ BEGIN 

2 IF (E(1) GTR L B I $  

2 GO TO 5555% END$ 

2 IF T+H+H GEQ FINAL$ 

2 GO TO 5 5 5 5 8  

2 FOR I=(l,l,EQ)$ 

2 X (  1 9 1  ) = I  1 ~ 4 )  S 

2 H= N+H4H+H$ 

2 

2SPECooIF T EQL F I N A L S  

2 GO SIMPS 

2 T=T-H$ 

2 FOR I=(l,l,EQ)S 

2 X(I~ll=X~I9J-l)S 

*2 H=F I NAL-T$ 

2 KEEPER=SKIPB 

2 AA=2$ 

2 BB=4$ 

2 SKIP=l$ 

2 CODE= 1.0 S 

2 GO 2222S 

2SIMP*.YMN=X(29J)S 

2 YPM=X41,J)$ 

2 S Q R T ( X ( 3 , J ) ) ) S  
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YMN=YMNoNOR$ 

YPN=YPMoNOR$ 

LLOLD=LL$ 

LLLOLD=LLLS 

EITHER I F  CNU EQL 1S 

LL=LL-YMNoYPNS 

OTHERWISES 

LL=LL+YMNoYPN$ 

2 LLL=SQRT(LL)S  

2 EITHER I F  LL LSS 1000S 

2 Z E R L I M = Z E R L I T o ( O o 0 0 0 5 ) $  

2 OTHERWISES 

2 Z E R L I M = Z E R t I T o ( O o 0 0 5 ) S  

2 I F  ABS(LL0LD-LL)  LEQ ZERLIMS 

2 GO COMPLETES 

2 GO REDO$ 

2COMPLETEeeWRITE ($$DONE)$  
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WRITE f$SID,IDL)$ 

WRITE [$$GAB,GA821$ 

WRITE [$SGAB3,GAB4)$ 

WRITE (!6$GA85)$ 

FOR 1=(1,1,51SBEGIN 

FOR II=Il9115)$ 

X(I,II)=O.O ENDS 

GO NEWLS 

FINISH$ 
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APPENDIX D 

EXAMPLE OF THE USE OF THE FUNDAMENTAL SOLUTIONS 

It is convenient to use the graphs of the fundamental 
solutions, Figures III.C.1-4 and IV.C.1-4, for rapid calcu- 
lations involving superposition of relatively simple bound- 
ary conditions to approximate more complicated ones. For 
illustration, a specific example will be treated in this 
appendix. 

Consider a problem in which the wall temperatures vary 
axially in the manner shown in Figure G.1. The fluid is 
air which enters at atmospheric.pressure with a fully 
established velocity profile and a uniform temperature of 
98.1' F. The inlet Reynolds number is 40,400, the plate 
spacing is 0.5 inches, and - - - 0.20. It is desired to 
determine the heat flux at each wall as a function of x. 

The pertinent equations are (II.D.23) and (II.D.24); 

Dh - 

these are reproduced here for convenience. 
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R e c a l l  t ha t  t h e  i n t e g r a l s  are t o  be evaluated i n  the 

Stielt jes sense.  Thus, approximating two and twi by 
the s t e p s  shown i n  Figure G.l, (D.l) and (0.2) become 

= -  
G o  D, 

a l l  s t e p s  
before  x 

11 - 

+ -  
a l l  s t e p s  
before  x - 

+ 1 [o: : )G - E ) ]  6 t w o ( E )  
a l l  s t e p s  
before  x 

Dh - 

T h e  w a l l  temperature s t e p s  employed a r e  as follows. 

two 

(OF) 

- 
X 

-2 .  O X ~ O - ~  -0.5 

-i.0~10-~ 2.0 
-1.5xlO-* 0.75 

-0.5~1 0-4 6.0 
0 11.75 

0 . 5 ~ 1 0 - ~  0.75 

t w i  

(OF) 

-0.75 
0.5 
1.5 
3.75 
6.75 
0.25 

(D.4) 

(x) a t  the  Reynolds num- The values  of Qii (x) and 

ber of i n t e r e s t  are obtained by c r o s s p l o t t i n g  t h e m  a g a i n s t  
R e  w i t h  x as a parameter using Figure I V . C . l ,  and then 

i o  
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- 
p l o t t i n g  aga ins t  x a t  t h e  proper R e .  Recal l  t h a t  

(1) - (1) - and Qio - cPoi . 'ii - OOO 
As an example of the ca l cu la t ion  procedure, consider 

t he  pos i t i on  a t  the  outer  (upper) p l a t e ,  x = 5 ~ 1 0 - ~ .  O n e  

ob ta ins  from (D.3) the  following r e s u l t .  

Go = 0.20 (80.0) (-0.5) + (82.0) (0.75) + (83.5) (2.0) I 
+ (86.0) (6.0) + (88.5) (11.75) + (91.5) (O.75)] 

J 

+ 0.20 [(-0.38) (-0.75) + (-0.24) (0.5) + (-0.125) (1.511 

Thus 

B t u  

h r - f t "  
Go = 362.5 

Proceeding i n  the above manner, t he  hea t  f luxes  a r e  - 
ca lcu la ted  f o r  s eve ra l  x values  a t  each p l a t e .  The 
results a r e  tabula ted  below, and p l o t t e d  on Figure D . l .  

$0 Xi 
(Btu/hr - f t2  ) (Btu/hr-f t")  

- 
X 

- 1 . 5 ~ 1 0 - ~  
-1. O X ~ O - ~  

-0.5 xl 0-4 

0 

0 . 5 ~ 1 0 - ~  
1. O X ~ O - ~  

1 .5x10m4 
2. O X ~ O - ~  

2 .5x10m4 
3. O X ~ O - ~  

3 .5x10m4 
4. O X ~ O - ~  

-11.5 
6.5 

52.1 
186.5 
408.3 
432.8 
406.4 
388.0 

374.2 
362.5 
352.4 
343.2 

-17.3 

-4.63 
30.3 

114.3 

261.7 
250.3 
235.0 
224.5 

216.5 
209.8 
203.7 
198.1 
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- 
X 

4 . 5 ~ 1 0 - ~  

5 . 5 ~ 1 0 - ~  

6 . 5 ~ 1 0 ~ ~  
7. O X ~ O - ~  

7 . 5 ~ 1 0 - ~  

5.OXlO-* 

6.  OX1Om4 

GO 
(Btu/hr-f t" ) 

337.0 
305.1 

323.1 
317.0 
311.0 

304.2 
299.1 

%i 
(Btu /h r - f t ' )  

193.5 
188.6 

184.4 
180.2 
176.4 

172.0 
170.5 

Refer r ing  t o  Figure V.B.3, it can be seen tha t  t h e  example 
given here is  the h e a t  f l u x  prediction for  tha t  p a r t i c u l a r  
tes t  run. 
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Figure D.l. Example of the Use of the Fundamental Solutions 
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APPENDIX E 

ESTIMATE OF THE RANGE OF VALIDITY OF THE 
TURBULENT SMALL x SOLUTIONS 

A s  can be seen from Figures  I V . C . 1 ,  2 ,  3 ,  and 4 ,  t he re  
i s  a l a rge  gap between the ca lcu la ted  fundamental so lu t ions  
and the  s m a l l  x asymptotes. Thus t h e  range of v a l i d i t y  
of t he  s m a l l  x so lu t ions  is  not apparent  from t h e  f i g u r e s ,  
a s  it i s  i n  t h e  laminar case.  For t h i s  reason it is  d e s i r -  
ab le  t o  use the  expressions developed i n  Section 1V.E t o  

obta in  es t imates  of t he  m a x i m u m  value of x f o r  which 
these so lu t ions  a r e  v a l i d .  

- 
- 

- 

- 
Recal l  t h a t  t h e  small x so lu t ions  were pred ica ted  on 

the  f a c t  t h a t  t he  temperature p r o f i l e  had not  y e t  pene t ra ted  
the  turbulen t  core;  t h a t  i s ,  it was confined t o  the  laminar 
sublayer .  Thus the  l i m i t i n g  x value sought can be ob- 
ta ined  by using the  temperature r e l a t i o n s  of Sect ion 1V.E 

t o  c a l c u l a t e  t h e  value of x a t  which the  sublayer  edge 

temperature has  r i s e n  t o ,  say,  1 percent  of t he  va lue  a t  
t h e  wal l .  

- 

- 

Taking the  laminar sublayer  edge t o  occur a t  y' = 5 

(from Figure IV.B.3 it is  seen t h a t  

(IV.B.8) i n d i c a t e s  t h a t  

- EM - - 0.1 h e r e ) ,  v 

def ines  t h e  sublayer  thickness .  Thus, t h e  s i m i l a r i t y  so lu-  
t i o n s  of Sec t ion  1V.E w i l l  be used t o  determine t h e  l i m i t i n g  
values  of the  v a r i a b l e  4 ,  and t h i s ,  combined with (E.1)  

w i l l  l ead  t o  xmax. 
Cases one and t h r e e  

H e r e  t h e  r a t i o  of f l u i d  t o  wal l  temperature is given 
by (IV.E.15) and ( I V . E . 6 ) .  
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Setting the temperature ratio equal to 0.01, one obtains 

Changing variables, let 

Then (E.3) becomes 

From P e a r ~ o n * ~  

Re f r52 0 

e 3  
2 

-0 3 
- -  

e c u  dcu = 0.99 

Re f 
2 - -  

1 e -cu 3 dcu = I (fiG e 3 ,  - $) 
(9 0 

where I is an incomplete gamma function. Hence 

c 3 ,  - $) = 0.99 1152 

(E.5) 

03-71 

Pearson tabulates the incomplete gamma function, and from 
his book and ( E . 7 )  one obtains 

7J5 e 3  = 4.79 
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Then, f r o m  (IV.E.8) and (E.l) 

3 
x - = (AT 32-i- 1 - 7.12 - 

1152 Re2  Re" 7J;? 
- - 

The maximum value of x for w h i c h  t h e  s m a l l  x solu- 
t i o n s  are v a l i d  for  cases one and three are given i n  the 
following table. 

20,000 2. O6X1Oe7 
30,000 9. 8w10-8 
50,000 3 .85X10-8 

Referr ing t o  Figures  I V . C . l  and IV.C.3, it can be seen t h a t  
t h e  fundamental s o l u t i o n s  do not  merge with the small  x 
asymptotes i n  the x range p lo t t ed .  

- 
- 

It  is  of i n t e r e s t  t o  note  t ha t  had the  1 percent  

r e s t r i c t i o n  imposed on the  temperature r a t i o  been relaxed 
t o  10  percent ,  the xmax values  t abu la t ed  above would be 

increased by only a f a c t o r  of 2.74. 

- 

C a s e s  t w o  and four  

H e r e  t h e  r a t io  of f l u i d  t o  w a l l  temperature is  given 
by (IV.E.34) and (IV.E.35). 

+ -  R e  384 f e 1 a e  

0 

(E.10) 
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S e t t i n g  t h e  temperature r a t i o  equal t o  0.01 and changing 
va r i ab le s  t o  w (defined by (E.4) ) , one ob ta ins  

Now l e t  

Then 

E 3  R e  f a & -  - 1152 (E .12)  

From Pearson 

a 

(E.14) 
J 
0 

So (E.13) becomes 

Using Pearson’s tables,  it is found t h a t  

a = 2.29 
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Then from (IV.E.251, ( E . 1 1 ,  and (33.12) 

1 - 8.60 
3 2  - -- 5 32 x -’ 

2.29 1152 Re2*- Re2* 
(E.16) 

- - 
The maximum value of x for which t h e  s m a l l  x solu-  

t i o n s  are v a l i d  f o r  cases t w o  and four  are given i n  t h e  
following table. 

- 
X R e  max 

20,000 2.48~10-~ 
30,000 1 . 1 9 ~ 1 0 - ~  

- 

50,000 4. 65X10-8 

- 
It can be seen t h a t  t h e  case two and four  s m a l l  x solu-  
t i o n s  are v a l i d  a t  somewhat greater values  of x than are 
t h e  case one and t h r e e  so lu t ions ;  however, t h i s  region of 

v a l i d i t y  is s t i l l  o f f  the scale of Figures  IV.C.2 and 
IV. C .4. 

- 
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APPENDIX F 

EXPERImNTAL UNCERTAINTY 

The experimental  uncer ta in ty  i n  t h e  w a l l  hea t  f l u x  , - G ,  and t h e  long i tud ina l  coordinate ,  x, can be est imated 
using t h e  method descr ibed by Kline and McClintock,”’ and 

basing t h e  estimates on odds of 20 t o  1. 
- 

Uncertainty i n  x 
- 

Recall  t h e  d e f i n i t i o n  of x. 

X - 
x n ,  D h R e P r  

The uncer ta in ty  i n  Dh i s  - +1 percent .  The longi tudina l  

pos i t ionsof  t h e  heated cel ls  are known wi th in  - + inch; 
thus x has  an unce r t a in ty  of - +6 percent  a t  t he  f i r s t  

1 

heated c e l l ,  - +0.69 percent  a t  t h e  f i f t h ,  
uncer ta in ty  a t  t h e  downstream end of t h e  

Prandt l  number uncer ta in ty  i s  about - +2.5 
Reynolds number is evaluated from 

R e  = - 

and a neg l ig ib l e  
test sec t ion .  The 
percent .  The 

where Ac i s  t h e  duc t  c r o s s  sec t iona l  a r ea .  The uncer- 

t a i n t y  of t h e  a i r  mass flow rate,  fn, 
and those of t h e  flow c r o s s  s e c t i o n a l  area and a i r  v i s c o s i t y  

are - +2 percent  and - +1.5 percent ,  respec t ive ly .  Thus t h e  
probable uncer ta in ty  i n  Reynolds number i s  - +2.8 percent ,  
and t h e  unce r t a in ty  i n  x becomes +7.1 percent  a t  t h e  
f i r s t  heated c e l l ,  diminishing t o  - +3.9 percent  down t h e  
passage. 

i s  - + 1 . 2  percent ,  

- 
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Uncertainty in 

From the repeatability of the heat meter calibrations 
and the accuracy of the calibrating ammeter and voltmeters, 
it is felt that the heat meter sensitivities are known with 
a probable uncertainty of - +5 percent. 
accuracy of the VTVM used for monitoring the heat meters 
during the tests, and the ability of the operator to "aver- 
age out" slight needle fluctuations, the final uncertainty 
in is - +7 percent. 

Considering the 
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APPENDIX G 

SOME USEFUL CONSTANTS 

There a r e  l i s t e d  here  f o r  convenience certain cons tan ts  

t h a t  appear i n  severa l  p laces  i n  the  body of t h i s  work. 

r (  f )  = 2.678939 

r ( +) = 1.354119 

I?($) = 0.8929796 

4 

23 = 2.519842 

1 - 
3' = 1.200937 

1 - 
32 = 1.732051 

7 - 
3' = 3.602811 
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